Skip to main content
Log in

The Association Between Dietary Magnesium Intake and Pulmonary Function: Recent Fndings from NHANES 2007–2012

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This article aims to study the correlation between dietary magnesium intake and pulmonary function, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database. This cross-sectional study examined representative samples of adults from the USA (n = 818; NHANES 2007–2012) to explore the correlation between magnesium intake and pulmonary function. We obtained the average magnesium intake over 2 days, as well as measured pulmonary function parameters, including forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow rate (PEF), and forced expiratory flow between 25 and 75% of FVC (FEF25-75%). Weighted multivariable linear regression was used to investigate the relationship between magnesium intake and pulmonary function. Additionally, subgroup analyses, interaction tests, and sensitivity analyses were conducted. Weighted multiple linear regression models revealed a significant positive correlation between magnesium and pulmonary function, even after adjusting for all included confounding variables. When we categorized magnesium intake into tertiles, we found that participants in the highest tertile of magnesium intake had significantly higher values for FVC (β: 898.54, 95%CI: 211.82–1585.25), FEV1 (β: 858.16, 95%CI: 212.41–1503.91), FEV1/FVC (β: 0.024, 95%CI: 0.004–0.044), PEF (β: 1324.52, 95%CI: 481.71–2167.33), and FEF25-75% (β: 831.39, 95%CI: 84.93–1577.84). Upon stratifying the data by age and sex, it was observed that this positive correlation was particularly pronounced among men aged 40–79. At the same time, the stability of the results was further confirmed by sensitivity analyses. This study suggested that dietary magnesium intake may improve pulmonary function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Publicly available datasets were analyzed in this study. This data can be found here: https://www.cdc.gov/nchs/nhanes.

References

  1. Agustí A, Celli BR, Criner GJ et al (2023) Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am J Respir Crit Care Med 207:819–837. https://doi.org/10.1164/rccm.202301-0106PP

    Article  PubMed  PubMed Central  Google Scholar 

  2. Graham BL, Steenbruggen I, Miller MR et al (2019) Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med 200:e70–e88. https://doi.org/10.1164/rccm.201908-1590ST

    Article  PubMed  PubMed Central  Google Scholar 

  3. GBD (2019) Chronic Respiratory Diseases Collaborators (2023) Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine 59:101936. https://doi.org/10.1016/j.eclinm.2023.101936

    Article  Google Scholar 

  4. Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226. https://doi.org/10.3390/nu7095388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. National Institutes of Health. Magnesium. National Institutes of Health, Bethesda, Maryland, USA. 2018. Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/. (accessed on 24 October 2020)

  6. Dana N, Karimi R, Mansourian M, Javanmard SH, Laher I, Vaseghi G (2021) Magnesium intake and lung cancer risk: a systematic review and meta-analysis. Int J Vitam Nutr Res 91(5–6):539–546. https://doi.org/10.1024/0300-9831/a000598

    Article  CAS  PubMed  Google Scholar 

  7. Forte GC, da Silva DTR, Hennemann ML, Sarmento RA, Almeida JC, de Tarso Roth Dalcin P (2018) Diet effects in the asthma treatment: a systematic review. Crit Rev Food Sci Nutr 58(11):1878–1887. https://doi.org/10.1080/10408398.2017.1289893

    Article  PubMed  Google Scholar 

  8. Bokhari SA, Haseeb S, Kaleem M, Baig MW, Khan HAB, Jafar R, Munir S, Haseeb S, Bhutta ZI (2022) Role of intravenous magnesium in the management of moderate to severe exacerbation of asthma: a literature review. Cureus 14(9):e28892. https://doi.org/10.7759/cureus.28892

    Article  PubMed  PubMed Central  Google Scholar 

  9. do Amaral AF, Rodrigues-Júnior AL, Terra Filho J, Vannucchi H, Martinez JA (2008) Effects of acute magnesium loading on pulmonary function of stable COPD patients. Med Sci Monit 14(10):CR524-9

  10. Gilliland FD, Berhane KT, Li YF, Kim DH, Margolis HG (2002) Dietary magnesium, potassium, sodium, and children’s lung function. Am J Epidemiol 155(2):125–131. https://doi.org/10.1093/aje/155.2.125

    Article  PubMed  Google Scholar 

  11. Zanforlini BM, Ceolin C, Trevisan C, Alessi A, Seccia DM, Noale M, Maggi S, Guarnieri G, Vianello A, Sergi G (2022) Clinical trial on the effects of oral magnesium supplementation in stable-phase COPD patients. Aging Clin Exp Res 34(1):167–174. https://doi.org/10.1007/s40520-021-01921-z

    Article  PubMed  Google Scholar 

  12. Ni H, Aye SZ, Naing C (2022) Magnesium sulfate for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 5(5):CD013506. https://doi.org/10.1002/14651858.CD013506.pub2

    Article  PubMed  Google Scholar 

  13. NCHS Research Ethics Review Board (ERB). Approval. Centers for Disease Control and Prevention (CDC). Accessed June 7, https://www.cdc.gov/nchs/nhanes/irba98.htm

  14. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370(9596):1453–1457. https://doi.org/10.1016/s0140-6736(07)61602-x

    Article  Google Scholar 

  15. National Center for Health Statistics (U.S.). National Health and Nutrition Examination Survey, Spirometry Procedures Manual, 2011-2012. In: https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/spirometry_procedures_manual.pdf. Accessed December 1, 2020

  16. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A et al (2005) ATS/ERS task force Standardisation of spirometry. Eur Respir J 26(2):319e338

    Article  Google Scholar 

  17. Hu P, Su W, Vinturache A et al (2021) Urinary 3-phenoxybenzoic acid (3-PBA) concentration and pulmonary function in children: a National Health and Nutrition Examination Survey (NHANES) 2007–2012 analysis. Environ Pollut 270:116178. https://doi.org/10.1016/j.envpol.2020.116178

  18. Johnson CL, Paulose-Ram R, Ogden CL et al (2013) National health and nutrition examination survey: analytic guidelines, 1999–2010. World Rev Nutr Diet 161:1–24

    Google Scholar 

  19. Huang W, Ma X, Chen Y et al (2022) Dietary magnesium intake modifies the association between vitamin D and systolic blood pressure: results from NHANES 2007–2014. Front Nutr 9:829857. https://doi.org/10.3389/fnut.2022.829857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tarleton EK (2018) Factors influencing magnesium consumption among adults in the United States. Nutr Rev 76(7):526–538. https://doi.org/10.1093/nutrit/nuy002

    Article  PubMed  Google Scholar 

  21. Zhai T, Li S, Hu W, Li D, Leng S (2018) Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients 10(7):813. https://doi.org/10.3390/nu10070813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanquerel L, Fillion-Bertrand G, Lavoie JP, Leclere M (2018) Effects of magnesium sulfate infusion on clinical signs and lung function of horses with severe asthma. Am J Vet Res 79(6):664–673. https://doi.org/10.2460/ajvr.79.6.664

    Article  CAS  PubMed  Google Scholar 

  23. Gozzi-Silva SC, Teixeira FME, Duarte AJDS, Sato MN, Oliveira LM (2021) Immunomodulatory role of nutrients: how can pulmonary dysfunctions improve? Front Nutr 7(8):674258. https://doi.org/10.3389/fnut.2021.674258

    Article  CAS  Google Scholar 

  24. Wallace TC (2020) Combating COVID-19 and building immune resilience: a potential role for magnesium nutrition? J Am Coll Nutr. 39(8):685–693. https://doi.org/10.1080/07315724.2020.1785971

    Article  CAS  PubMed  Google Scholar 

  25. Hashim Ali Hussein S, Nielsen LP, KonowBøgebjergDolberg M, Dahl R (2015) Serum magnesium and not vitamin D is associated with better QoL in COPD: a cross-sectional study. Respir Med 109(6):727–33. https://doi.org/10.1016/j.rmed.2015.03.005

    Article  PubMed  Google Scholar 

  26. Wang D, Zhu ZL, Lin DC, Zheng SY, Chuang KH, Gui LX, Yao RH, Zhu WJ, Sham JSK, Lin MJ (2021) Magnesium supplementation attenuates pulmonary hypertension via regulation of magnesium transporters. Hypertension 77(2):617–631. https://doi.org/10.1161/HYPERTENSIONAHA.120.14909

    Article  CAS  PubMed  Google Scholar 

  27. U.S. Department of Agriculture and U.S. Department of Health and Human Services (2020) Dietary Guidelines for Americans, 2020–2025, 9th edn. Retrieved January 8, 2024, from https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials

  28. Landon RA, Young EA (1993) Role of magnesium in regulation of lung function. J Am Diet Assoc 93(6):674–677. https://doi.org/10.1016/0002-8223(93)91675-g

    Article  CAS  PubMed  Google Scholar 

  29. Moon J, Cho E-S, Lee M-Y et al (2021) Magnesium augments immunosuppressive effects of a corticosteroid in obese mice with airway inflammation. Asian Pac J Allergy Immunol 39:15–24. https://doi.org/10.12932/AP-091018-0412

    Article  CAS  PubMed  Google Scholar 

  30. Daloee TS, Behbahani FK (2020) MgCl2 and its applications in organic chemistry and biochemistry: a review. Mol Divers 24:463–476. https://doi.org/10.1007/s11030-019-09947-2

    Article  CAS  PubMed  Google Scholar 

  31. Mims JW (2015) Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5(Suppl 1):S2-6. https://doi.org/10.1002/alr.21609

    Article  PubMed  Google Scholar 

  32. Hoorn EJ, Zietse R (2013) Disorders of calcium and magnesium balance: a physiology-based approach. Pediatr Nephrol 28(8):1195–1206. https://doi.org/10.1007/s00467-012-2350-2

    Article  PubMed  Google Scholar 

  33. Tangvoraphonkchai K, Davenport A (2018) Magnesium and cardiovascular disease. Adv Chronic Kidney Dis 25:251–260. https://doi.org/10.1053/j.ackd.2018.02.010

    Article  PubMed  Google Scholar 

  34. Severino P, D’Amato A, Prosperi S et al (2022) The mutual relationship among cardiovascular diseases and COVID-19: focus on micronutrients imbalance. Nutrients 14:3439. https://doi.org/10.3390/nu14163439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27:41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gargaglioni LH, Marques DA, Patrone LGA (2019) Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol 238:110543. https://doi.org/10.1016/j.cbpa.2019.110543

    Article  CAS  PubMed  Google Scholar 

  37. Soleimanpour H, Imani F, Dolati S et al (2022) Management of pain using magnesium sulphate: a narrative review. Postgrad Med 134:260–266. https://doi.org/10.1080/00325481.2022.2035092

    Article  CAS  PubMed  Google Scholar 

  38. Hirota N, Martin JG (2013) Mechanisms of airway remodeling. Chest 144(3):1026–1032. https://doi.org/10.1378/chest.12-3073

    Article  PubMed  Google Scholar 

  39. Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira AR, Cruz KJ, do NascimentoMarreiro D (2017) Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 176(1):20-2de2. https://doi.org/10.1007/s12011-016-0793-1

    Article  CAS  PubMed  Google Scholar 

  40. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46. https://doi.org/10.1152/physrev.00012.2014

    Article  CAS  PubMed  Google Scholar 

  41. Das UN (2021) “Cell membrane theory of senescence” and the role of bioactive lipids in aging, and aging associated diseases and their therapeutic implications. Biomolecules 11(2):241. https://doi.org/10.3390/biom11020241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stefanache A, Lungu I-I, Butnariu I-A et al (2023) Understanding how minerals contribute to optimal immune function. J Immunol Res 2023:3355733. https://doi.org/10.1155/2023/3355733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu M, Dudley SC Jr (2020) Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants (Basel) 9(10):907. https://doi.org/10.3390/antiox9100907

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mo-Yao Tan, Jian-Tao Wang, and Xiang-Long Zhai conceived and designed the study. Mo-Yao Tan, Jian-Tao Wang, and Xiang-Long Zhai conducted data collection, data analysis, and data interpretation. Mo-Yao Tan, Si-Xuan Zhu, and Gao-Peng Wang contributed to literature checks and data visualization. Mo-Yao Tan drafted the initial manuscript and all authors made critical revisions of the manuscript. Mo-Yao Tan, Si-Xuan Zhu, and Gao-Peng Wang verified the underlying study data. All authors read the manuscript and approved the final draft. All authors confirm that they had full access to all the data in the study and accept responsibility to submit for publication.

Corresponding author

Correspondence to Xiang-Long Zhai.

Ethics declarations

Ethics Approval

All participants submitted written informed consent and were approved by the National Ethics Board.

Consent to Participate

The participant data were obtained from the publicly available NHANES database, so no additional consent was obtained.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, MY., Wang, JT., Wang, GP. et al. The Association Between Dietary Magnesium Intake and Pulmonary Function: Recent Fndings from NHANES 2007–2012. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04061-3

Keywords

Navigation