Skip to main content
Log in

Understanding Cr(III) Action on Mitochondrial ATP Synthase and AMPK Efficacy: Insights from Previous Studies—a Review

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium supplementation has been notably recognized for its potential health benefits, especially in enhancing insulin sensitivity and managing glucose metabolism. However, recent studies have begun to shed light on additional mechanisms of action for chromium, expanding our understanding beyond its classical effects on the insulin-signaling pathway. The beta subunit of mitochondrial ATP synthase is considered a novel site for Cr(III) action, influencing physiological effects apart from insulin signaling. The physiological effects of chromium supplementation have been extensively studied, particularly in its role in anti-oxidative efficacy and glucose metabolism. However, recent advancements have prompted a re-evaluation of chromium’s mechanisms of action beyond the insulin signaling pathway. The discovery of the beta subunit of mitochondrial ATP synthase as a potential target for chromium action is discussed, emphasizing its crucial role in cellular energy production and metabolic regulation. A meticulous analysis of relevant studies that were earlier carried out could shed light on the relationship between chromium supplementation and mitochondrial ATP synthase. This review categorizes studies based on their primary investigations, encompassing areas such as muscle protein synthesis, glucose and lipid metabolism, and antioxidant properties. Findings from these studies are scrutinized to distinguish patterns aligning with the new hypothesis. Central to this exploration is the presentation of studies highlighting the physiological effects of chromium that extend beyond the insulin signaling pathway. Evaluating the various independent mechanisms of action that chromium impacts cellular energy metabolism and overall metabolic balance has become more important. In conclusion, this review is a paradigm shift in understanding chromium supplementation, paving the way for future investigations that leverage the intricate interplay between chromium and mitochondrial ATP synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated during the current study.

Code Availability

Not applicable.

References

  1. Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating ınsulin resistance. J Nutr Biochem 23:313–319. https://doi.org/10.1016/j.jnutbio.2011.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vincent JB (2015) Is the pharmacological mode of action of chromium(III) as a second messenger? Biol Trace Elem Res 166:7–12. https://doi.org/10.1007/s12011-015-0231-9

    Article  CAS  PubMed  Google Scholar 

  3. Anderson RA (2003) Chromium and insulin resistance. Nutr Res Rev 16:267–275. https://doi.org/10.1079/NRR200366

    Article  CAS  PubMed  Google Scholar 

  4. Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626–633. https://doi.org/10.1093/jn/123.4.626

    Article  CAS  PubMed  Google Scholar 

  5. Martin J, Wang ZQ, Zhang XH et al (2006) Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care 29:1826–1832. https://doi.org/10.2337/dc06-0254

    Article  CAS  PubMed  Google Scholar 

  6. Coates MPMCM, Paul MB, Blackman MR, Cragg GM, Levine M, White JD, Joel, (2013) Encyclopedia of Dietary Supplements (Online). CRC Press, Boca Raton

    Google Scholar 

  7. Costello RB, Dwyer JT, Bailey RL (2016) Chromium supplements for glycemic control in type 2 diabetes: limited evidence of effectiveness. Nutr Rev 74:455–468. https://doi.org/10.1093/nutrit/nuw011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang H, Hu L, Li H et al (2023) Mitochondrial ATP synthase as a direct molecular target of chromium(III) to ameliorate hyperglycaemia stress. Nat Commun 14:1738. https://doi.org/10.1038/s41467-023-37351-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. DesMarais TL, Costa M (2019) Mechanisms of chromium-ınduced toxicity. Curr Opin Toxicol 14:1–7. https://doi.org/10.1016/j.cotox.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khodavirdipour A, Haddadi F, Keshavarzi S (2020) Chromium supplementation; negotiation with diabetes mellitus, hyperlipidemia and depression. J Diabetes Metab Disord 19:585–595. https://doi.org/10.1007/s40200-020-00501-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sahin K, Kucuk O, Orhan C et al (2021) Effects of supplementing different chromium histidinate complexes on glucose and lipid metabolism and related protein expressions in rats fed a high-fat diet. J Trace Elem Med Biol 65:126723. https://doi.org/10.1016/j.jtemb.2021.126723

    Article  CAS  PubMed  Google Scholar 

  12. Sahin K, Tuzcu M, Orhan C et al (2012) The effects of chromium picolinate and chromium histidinate administration on NF-κB and Nrf2/HO-1 pathway in the brain of diabetic rats. Biol Trace Elem Res 150:291–296. https://doi.org/10.1007/s12011-012-9475-9

    Article  CAS  PubMed  Google Scholar 

  13. Orhan C, Kucuk O, Tuzcu M et al (2019) Effect of supplementing chromium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high-fat diet. Food Sci Nutr 7:183–194. https://doi.org/10.1002/fsn3.851

    Article  CAS  PubMed  Google Scholar 

  14. Ulas M, Orhan C, Tuzcu M et al (2015) Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats. BMC Complement Altern Med 15:16. https://doi.org/10.1186/s12906-015-0537-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vincent JB (2023) What Are the Implications of Cr(III) Serving as an ınhibitor of the beta subunit of mitochondrial ATP synthase? Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03809-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hoffman NJ, Penque BA, Habegger KM et al (2014) Chromium enhances insulin responsiveness via AMPK. J Nutr Biochem 25:565–572. https://doi.org/10.1016/j.jnutbio.2014.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orhan C, Tuzcu M, Deeh PBD et al (2019) Organic chromium form alleviates the detrimental effects of heat stress on nutrient digestibility and nutrient transporters in laying hens. Biol Trace Elem Res 189:529–537. https://doi.org/10.1007/s12011-018-1485-9

    Article  CAS  PubMed  Google Scholar 

  18. Sahin N, Hayirli A, Orhan C et al (2018) Effects of the supplemental chromium form on performance and metabolic profile in laying hens exposed to heat stress. Poult Sci 97:1298–1305. https://doi.org/10.3382/ps/pex435

    Article  CAS  PubMed  Google Scholar 

  19. Onderci M, Sahin N, Sahin K, Kilic N (2003) Antioxidant properties of chromium and zinc: in vivo effects on digestibility, lipid peroxidation, antioxidant vitamins, and some minerals under a low ambient temperature. Biol Trace Elem Res 92:139–150. https://doi.org/10.1385/BTER:92:2:139

    Article  CAS  PubMed  Google Scholar 

  20. Turgut M, Cinar V, Pala R et al (2018) Biotin and chromium histidinate improve glucose metabolism and proteins expression levels of IRS-1, PPAR-γ, and NF-κB in exercise-trained rats. J Int Soc Sports Nutr 15:45. https://doi.org/10.1186/s12970-018-0249-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahin K, Orhan C, Ozdemir O et al (2023) Effects of whey protein combined with amylopectin/chromium on the muscle protein synthesis and mTOR phosphorylation in exercised rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03732-x

    Article  PubMed  Google Scholar 

  22. Ozdemir O, Erten F, Er B et al (2023) Evaluation of pea/rice and amylopectin/chromium as an alternative protein source to improve muscle protein synthesis in rats. Eur J Nutr 62:2293–2302. https://doi.org/10.1007/s00394-023-03150-8

    Article  CAS  PubMed  Google Scholar 

  23. Komorowski JR, Ojalvo SP, Sylla S et al (2020) The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle. J Int Soc Sports Nutr 17:26. https://doi.org/10.1186/s12970-020-00355-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pala R, Sari MA, Erten F et al (2020) The effects of chromium picolinate on glucose and lipid metabolism in running rats. J Trace Elem Med Biol 58:126434. https://doi.org/10.1016/j.jtemb.2019.126434

    Article  CAS  PubMed  Google Scholar 

  25. Machac N, Kaya Karasu G, Sahin N et al (2019) Effects of supplementation of chromium histidinate on glucose, lipid metabolism and oxidative stress in cats. J Anim Physiol Anim Nutr (Berl) 103:331–338. https://doi.org/10.1111/jpn.13023

    Article  CAS  PubMed  Google Scholar 

  26. Selcuk MY, Aygen B, Dogukan A et al (2012) Chromium picolinate and chromium histidinate protects against renal dysfunction by modulation of NF-κB pathway in high-fat diet fed and Streptozotocin-induced diabetic rats. Nutr Metab (Lond) 9:30. https://doi.org/10.1186/1743-7075-9-30

    Article  CAS  PubMed  Google Scholar 

  27. Tuzcu M, Sahin N, Orhan C et al (2011) Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab (Lond) 8:28. https://doi.org/10.1186/1743-7075-8-28

    Article  CAS  PubMed  Google Scholar 

  28. Sahin K, Tuzcu M, Orhan C et al (2011) The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet. Biol Trace Elem Res 143:1018–1030. https://doi.org/10.1007/s12011-010-8905-9

    Article  CAS  PubMed  Google Scholar 

  29. Dogukan A, Tuzcu M, Juturu V et al (2010) Effects of chromium histidinate on renal function, oxidative stress, and heat-shock proteins in fat-fed and streptozotocin-treated rats. J Ren Nutr 20:112–120. https://doi.org/10.1053/j.jrn.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  30. Dogukan A, Sahin N, Tuzcu M et al (2009) The effects of chromium histidinate on mineral status of serum and tissue in fat-fed and streptozotocin-treated type II diabetic rats. Biol Trace Elem Res 131:124–132. https://doi.org/10.1007/s12011-009-8351-8

    Article  CAS  PubMed  Google Scholar 

  31. Sahin K, Onderci M, Tuzcu M et al (2007) Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism 56:1233–1240. https://doi.org/10.1016/j.metabol.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  32. Sahin K, Onderci M, Sahin N et al (2004) Effects of dietary combination of chromium and biotin on egg production, serum metabolites, and egg yolk mineral and cholesterol concentrations in heat-distressed laying quails. Biol Trace Elem Res 101:181–192. https://doi.org/10.1385/BTER:101:2:181

    Article  CAS  PubMed  Google Scholar 

  33. Sahin N, Sahin K, Onderci M et al (2003) In vivo antioxidant properties of vitamin E and chromium in cold-stressed Japanese quails. Arch Tierernahr 57:207–215. https://doi.org/10.1080/0003942031000136639

    Article  CAS  PubMed  Google Scholar 

  34. Sahin K, Sahin N, Kucuk O (2002) Effects of dietary chromium and ascorbic acid supplementation on digestion of nutrients, serum antioxidant status, and mineral concentrations in laying hens reared at a low ambient temperature. Biol Trace Elem Res 87:113–124. https://doi.org/10.1385/BTER:87:1-3:113

    Article  CAS  PubMed  Google Scholar 

  35. Sahin K, Ozbey O, Onderci M et al (2002) Chromium supplementation can alleviate negative effects of heat stress on egg production, egg quality and some serum metabolites of laying Japanese quail. J Nutr 132:1265–1268. https://doi.org/10.1093/jn/132.6.1265

    Article  CAS  PubMed  Google Scholar 

  36. Sahin K, Küçük O, Sahin N (2001) Effects of dietary chromium picolinate supplementation on performance and plasma concentrations of insulin and corticosterone in laying hens under low ambient temperature. J Anim Physiol Anim Nutr (Berl) 85:142–147. https://doi.org/10.1046/j.1439-0396.2001.00314.x

    Article  CAS  PubMed  Google Scholar 

  37. Kayri V, Orhan C, Tuzcu M et al (2019) Combination of soy protein, amylopectin, and chromium stimulates muscle protein synthesis by regulation of ubiquitin-proteasome proteolysis pathway after exercise. Biol Trace Elem Res 190:140–149. https://doi.org/10.1007/s12011-018-1539-z

    Article  CAS  PubMed  Google Scholar 

  38. Ozdemir O, Tuzcu M, Sahin N et al (2017) Organic chromium modifies the expression of orexin and glucose transporters of ovarian in heat-stressed laying hens. Cell Mol Biol (Noisy-le-grand) 63:93–98. https://doi.org/10.14715/cmb/2017.63.10.15

    Article  CAS  PubMed  Google Scholar 

  39. Sahin N, Hayirli A, Orhan C et al (2017) Effects of the supplemental chromium form on performance and oxidative stress in broilers exposed to heat stress. Poult Sci 96:4317–4324. https://doi.org/10.3382/ps/pex249

    Article  CAS  PubMed  Google Scholar 

  40. Sahin K, Tuzcu M, Orhan C et al (2013) Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr 110:197–205. https://doi.org/10.1017/S0007114512004850

    Article  CAS  PubMed  Google Scholar 

  41. Sahin N, Sahin K, Onderci M et al (2005) Chromium picolinate, rather than biotin, alleviates performance and metabolic parameters in heat-stressed quail. Br Poult Sci 46:457–463. https://doi.org/10.1080/00071660500190918

    Article  CAS  PubMed  Google Scholar 

  42. Onderci M, Sahin K, Sahin N et al (2005) Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics, and oxidative stress markers in heat-distressed Japanese quail. Biol Trace Elem Res 106:165–176. https://doi.org/10.1385/BTER:106:2:165

    Article  CAS  PubMed  Google Scholar 

  43. Sahin K, Sahin N, Onderci M et al (2002) Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biol Trace Elem Res 89:53–64. https://doi.org/10.1385/BTER:89:1:53

    Article  CAS  PubMed  Google Scholar 

  44. Sahin K, Onderci M, Sahin N, Aydin S (2002) Effects of dietary chromium picolinate and ascorbic acid supplementation on egg production, egg quality and some serum metabolites of laying hens reared under a low ambient temperature (6 degrees C). Arch Tierernahr 56:41–49. https://doi.org/10.1080/00039420214174

    Article  CAS  PubMed  Google Scholar 

  45. Sahin N, Onderci M, Sahin K (2002) Effects of dietary chromium and zinc on egg production, egg quality, and some blood metabolites of laying hens reared under low ambient temperature. Biol Trace Elem Res 85:47–58. https://doi.org/10.1385/BTER:85:1:47

    Article  CAS  PubMed  Google Scholar 

  46. Sahin K, Tuzcu M, Orhan C et al (2013) Chromium modulates expressions of neuronal plasticity markers and glial fibrillary acidic proteins in hypoglycemia-induced brain injury. Life Sci 93:1039–1048. https://doi.org/10.1016/j.lfs.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  47. Sahin N, Akdemir F, Orhan C et al (2012) A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats. Nutr Neurosci 15:42–47. https://doi.org/10.1179/1476830512Y.0000000018

    Article  CAS  PubMed  Google Scholar 

  48. Thirunavukkarasu M, Penumathsa S, Juhasz B et al (2006) Enhanced cardiovascular function and energy level by a novel chromium (III)-supplement. BioFactors 27:53–67. https://doi.org/10.1002/biof.5520270106

    Article  CAS  PubMed  Google Scholar 

  49. Zhao P, Wang J, Ma H et al (2009) A newly synthetic chromium complex-chromium (D-phenylalanine)3 activates AMP-activated protein kinase and stimulates glucose transport. Biochem Pharmacol 77:1002–1010. https://doi.org/10.1016/j.bcp.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  50. Penumathsa SV, Thirunavukkarasu M, Samuel SM et al (2009) Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin-induced diabetic rats after ischemia-reperfusion injury. Biochim Biophys Acta 1792:39–48. https://doi.org/10.1016/j.bbadis.2008.10.018

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y-Q, Dong Y, Yao M-H (2009) Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase. Clin Exp Pharmacol Physiol 36:843–849. https://doi.org/10.1111/j.1440-1681.2009.05164.x

    Article  CAS  PubMed  Google Scholar 

  52. Sealls W, Penque BA, Elmendorf JS (2011) Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia–brief report. Arterioscler Thromb Vasc Biol 31:1139–1140. https://doi.org/10.1161/ATVBAHA.110.222158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hao J, Hao C, Zhang L et al (2015) OM2, a novel oligomannuronate-chromium(III) complex, promotes mitochondrial biogenesis and lipid metabolism in 3T3-L1 adipocytes via the AMPK-PGC1α pathway. PLoS ONE 10:e0131930. https://doi.org/10.1371/journal.pone.0131930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu L, Wang B, He Y et al (2017) Effects of chromium-loaded chitosan nanoparticles on glucose transporter 4, relevant mRNA, and proteins of phosphatidylinositol 3-kinase, Akt2-kinase, and AMP-activated protein kinase of skeletal muscles in finishing pigs. Biol Trace Elem Res 178:36–43. https://doi.org/10.1007/s12011-016-0890-1

    Article  CAS  PubMed  Google Scholar 

  55. Zhang W, Chen H, Ding Y et al (2020) Effect of chromium citrate on the mechanism of glucose transport and insulin resistance in Buffalo rat liver cells. Indian J Pharmacol 52:31–38. https://doi.org/10.4103/ijp.IJP_608_18

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim J, Chung K, Johnson BJ (2020) Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes. Asian-Australas J Anim Sci 33:651–661. https://doi.org/10.5713/ajas.19.0089

    Article  CAS  PubMed  Google Scholar 

  57. Zhang W, Li L, Ma Y et al (2022) Structural characterization and hypoglycemic activity of a novel pumpkin peel polysaccharide-chromium(III) complex. Foods 11:1821. https://doi.org/10.3390/foods11131821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Turkish Academy of Science (Ankara, Turkey, KS, in part) for supporting the study.

Funding

This study received funding from the Turkish Academy of Sciences (in part, KS).

Author information

Authors and Affiliations

Authors

Contributions

H.G., C.O., and KS drafted the main text. K.S. edited and supervised the manuscript.

Corresponding author

Correspondence to Kazim Sahin.

Ethics declarations

Ethics Approval

Not applicable.

Competing interests

The authors declare no competing interests.

Disclaimer

The funders were not involved in the writing of this article or the decision to submit it for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gencoglu, H., Orhan, C. & Sahin, K. Understanding Cr(III) Action on Mitochondrial ATP Synthase and AMPK Efficacy: Insights from Previous Studies—a Review. Biol Trace Elem Res 202, 1325–1334 (2024). https://doi.org/10.1007/s12011-023-04010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-04010-6

Keywords

Navigation