Skip to main content
Log in

Correlation Between Toxic Elements and Pesticide Residues in Medicinal Herbs Available in Pharmaceutical Market

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The use of medicinal plants for self-medication of minor health conditions has become a widespread practice in contemporary society. Few consumes, however, question the contamination of these products with toxic factors resulting from the planet’s increasingly polluted environment. This paper presents the levels of five toxic elements (As, Cr, Pb, Cd, and Hg) and nine organochlorine pesticides (hexachlorobenzene (HCB), lindane, heptachor, aldrin, dieldrin, endrin, p,p’DDE, p,p’DDD, and p,p’DDT) in 14 brands of regularly consumed medicinal products in Romania. The toxic elements content was determined using energy-dispersive X-ray fluorescence (EDXRF) technique, and organochlorine pesticide residues (OPCs) were quantified using gas-chromatographic method, equipped with electron capture detector (GC-ECD). The results show that in the case of Cr, Cd, and Hg, the concentrations exceeded the limit values established by World Health Organisation (WHO) for raw herbal material. The higher level of OPCs (such as p,p’DDD, p,p’DDT, aldrin, and dieldrin) was found in the samples of Hypericum perforatum-St. John’s wort, Crataegus monogyna-hawthorn, and Epilobium parviflorum-hoary willowherb. The correlations between the content of toxic elements and pesticides were determined by statistical analysis. Hierarchical clustering technique was used to detect natural grouping between the toxic elements and pesticides. For herb samples, four clusters were identified, the strongest correlated cluster consisting of Pb, HCB, Cr, and Hg. A further analysis within this cluster suggested that Cr levels are statistically different from the rest of the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. WHO, World Health Organization (2019) WHO global report on traditional and complementary medicine, Geneva; Licence CC BY-NC-SA 3.0 IGO

  2. Gorelova S, Frontasyeva M (2017) Phytoremediation management of environmental contaminants: the use of higher plants in biomonitoring and environmental bioremediation. Springer International Publishing AG (eBook) 5(5). https://doi.org/10.1007/978-3-319-52381-1

    Book  Google Scholar 

  3. Wang CC, Zhang QC, Kang SG, Li MY, Zhang MY, Xu WM, Xiang P, Ma LQ (2023) Heavy metal (loid) s in agricultural soil from main grain production regions of China: bioaccessibility and health risks to humans. Sci Total Environ 858(2):159819. https://doi.org/10.1016/j.scitotenv.2022.159819

    Article  CAS  PubMed  Google Scholar 

  4. Kloke A, Sauerback DR, Vetter H (1984) The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu JO (ed) Changing Metal Cycles and Human Health. Springer-Verlag, Berlin, pp 113–141

    Chapter  Google Scholar 

  5. International Agency for Researcg on Cancer (IARC) (2017) Agents Classified by the IARC Monographs. 1–123

  6. Taghizadeh SF, Azizi M, Hassanpourfard G, Rezaee R, Karimi G (2023) Assessment of carcinogenic and non-carcinogenic risk of exposure to metals via consumption of coffee, tea, and herbal tea in Iranians. Biol Trace Elem Res 201:1520–1537. https://doi.org/10.1007/s12011-022-03239-x

    Article  CAS  PubMed  Google Scholar 

  7. Zuin VG, Yariwake JH, Bicchi C (2003) Fast supercritical fluid extraction and high-resolution gas chromatography with electron-capture and flame photometric detection for multiresidue screening of organochlorine and organophosphorus pesticides in Brazil’s medicinal plants. J Chromatogr A 985:159–166

    Article  CAS  PubMed  Google Scholar 

  8. Georgiadis N, Tsarouhas K, Tsitsimpikou C, Vardavas A, Rezaee R, Germanakis I, Tsatsakis A, Stagos D, Kouretas D (2018) Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 353:1–14

    Article  CAS  PubMed  Google Scholar 

  9. Taghizadeh SF, Goumenou M, Rezaee R, Alegakis T, Kokaraki V, Anesti O, Sarigiannis DA, Tsatsakis A, Karimi G (2019) Cumulative risk assessment of pesticide residues in different Iranian pistachio cultivars: applying the source specific HQS and adversity specific HIA approaches in Real Life Risk Simulations (RLRS). Toxicol Lett 313:91–100

    Article  CAS  PubMed  Google Scholar 

  10. Taghizadeh SF, Rezaee R, Azizi M, Hayes AW, Giesy JP, Karimi G (2021) Pesticides, metals and polycyclic aromatic hydrocarbons in date fruits: a probabilistic assessment of risk to health of Iranian consumers. J Food Compost Anal 98:103815

    Article  CAS  Google Scholar 

  11. Luo L, Dong L, Huang Q, Ma S, Fantke P, Li J, Jiang J, Fitzgerald M, Yang J, Jia Z, Zhang J, Wang H, Dai Y, Zhu G, Xing Z, Liang Y, Li M, Wei G, Song J et al (2021) Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. Chemosphere 262:127477. https://doi.org/10.1016/j.chemosphere.2020.127477

    Article  CAS  PubMed  Google Scholar 

  12. Yang CM, Chien MY, Chao PC, Huang CM, Chen CH (2021) Investigation of toxic heavy metals content and estimation of potential health risks in Chinese herbal medicine. J Hazard Mater 412:125142. https://doi.org/10.1016/j.jhazmat.2021.125142

    Article  CAS  PubMed  Google Scholar 

  13. Filipiak-Szok A, Kurzawa M, Szłyk E (2015) Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements. J Trace Elem Med Biol 30:54–58

    Article  CAS  PubMed  Google Scholar 

  14. Kulhari A, Sheorayan A, Bajar S, Susheel Sarkar S, Chaudhury A, Kalia RK (2013) Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. Springer Plus 2:676 http://www.springerplus.com/content/2/1/676

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tariq SR, Rashid N (2013) Multivariate analysis of metal levels in paddy soil, rice plants, and rice grains: a case study from Shakargarh, Pakistan. J Chem 1-10:539251. https://doi.org/10.1155/2013/539251

    Article  CAS  Google Scholar 

  16. Tariq SR, Shafiq M, Chotana GA (2016) Distribution of heavy metals in the soils associated with the commonly used pesticides in cotton fields. Scientifica:7575239. https://doi.org/10.1155/2016/7575239

  17. Gupta N, Yadav KK, Kumar V, Cabral-Pinto MMS, Alam M, Kumar S, Prasad S (2021) Appraisal of contamination of heavy metals and health risk in agricultural soil of Jhansi city India. Environ Toxicol Pharmacol 88:103740. https://doi.org/10.1016/j.etap.2021.103740

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Tan SN, Yusof MLM, Ghosh S, Ming Lam Y (2022) Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore. Environ Pollut 295:118681. https://doi.org/10.1016/j.envpol.2021.118681

    Article  CAS  PubMed  Google Scholar 

  19. Tariq SR, Iqbal F, Ijaz A (2013) Assessment and multivariate analysis of metals in surgical instrument industry affected top soils and groundwater for future reclamation. Int J Environ Pollut 1:54–71

    CAS  Google Scholar 

  20. European Pharmacopoeia (EP) (2019) Monographs on herbal drugs and herbal drug preparations. Council of Europe 1:1289–1675

    Google Scholar 

  21. Potts PJ, Ellis AT, Kregsamer P, Marshall J, Streli C, West M, Wobrauschek P (2004) Atomic spectrometry update. X-ray fluorescence spectrometry. J Anal At Spectrom 19:1397–1419

    Article  CAS  Google Scholar 

  22. Jyothsna S, Manjula G, Suthari S, Nageswara Rao AS (2020) Qualitative elemental analysis of selected potential anti-asthmatic medicinal plant taxa using EDXRF technique. Heliyon 6:e03260. https://doi.org/10.1016/j.heliyon.2020.e03260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R version 3.4.3 (2017-11-30)Kite-eating tree, Copyright (C) 2017 The R Foundation for Statistical Computing, Platform: x86_64-pc-linux-gnu (64-bit).

  24. Gu Y, Wang C (2010) A study of hierarchical correlation clustering for scientific volume data. In: International Symposium on Visual Computing. Springer, pp 437–446

    Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  26. Popović-Djordjević J, Paunović D, Milić A, Krstić D, Moghaddam SS, Roje V (2021) Multi-elemental analysis, pattern recognition techniques of wild and cultivated rosehips from Serbia, and nutritional aspect. Biol Trace Elem Res 199:1110–1122. https://doi.org/10.1007/s12011-020-02199-4

    Article  CAS  PubMed  Google Scholar 

  27. Sui M, Kong D, Ruan H, Sun X, Gu W, Guo M, Ding S, Yang M (2023) Distribution characteristics of nutritional elements and combined health risk of heavy metals in medicinal tea from genuine producing area of China. Biol Trace Elem Res 201:984–994. https://doi.org/10.1007/s12011-022-03173-y

    Article  CAS  PubMed  Google Scholar 

  28. WHO, World Health Organization (2007) Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Switzerland, Geneva

    Google Scholar 

  29. Sindhu S, Beena C (2016) Quantification of heavy metals in the Aloe vera L. samples available in the market. S. Indian J of Biol Sci 2(1):81–83

    Google Scholar 

  30. Singh KP, Bhattacharya S, Sharma P (2014) Assessment of heavy metal contents of some Indian medicinal plants American- Eurasian. J Agric Environ Sci 14:1125–1129

    Google Scholar 

  31. Kumar V, Srivastava S, Chauhan RK, Thakur RK, Singh J (2017) Heavy metals and microbial contamination of certain leafy vegetables grown in abattoir effluent disposal province of Saharanpur (Uttar Pradesh) India. AESA 2(1):36–43

    Google Scholar 

  32. Ziarati P (2012) Determination of contaminants in some Iranian popular herbal medicines. J Anal Toxicol 2(1):1–3

    Google Scholar 

  33. Özden H, Özden S (2018) Levels of heavy metals and ochratoxin A in medicinal plants commercialized in Turkey. Turk J Pharm 15(3):376–381

    Google Scholar 

  34. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  PubMed  Google Scholar 

  35. Sharma P, Dubey RS (2005) Lead toxicity in plants. J Plant Physiol 17:35–52

    CAS  Google Scholar 

  36. Dghaim R, Khatib SA, Rasool H, Khan MA (2015) Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J Environ Health:973878. https://doi.org/10.1155/2015/973878

  37. Peralta-Videa JR, Lopez ML, Narayana M, Saupea G, Gardea-Torresdeya J (2009) The biochemistry of environmen-tal heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  38. Vikram A, Johri T, Tandon PK (2011) Effect of chromium (IV) on growth and metabolism of Spinacia oleracea (Spinach) plants. Research in Environment and Life Science 4(3):119–124

    Google Scholar 

  39. Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44(10):590–595

    Article  CAS  PubMed  Google Scholar 

  40. Begum HA, Hamayun M, Zaman K, Shinwari ZK, Hussain A (2017) Heavy metal analysis in frequently consumable medicinal plants of Khyber Paktunkhwa. Pakistan Pak J Bot 49(3):1155–1160

    CAS  Google Scholar 

  41. Street RA (2012) Heavy metals in medicinal plant products—an African perspective. S Afr J Bot 82:67–74. https://doi.org/10.1016/j.sajb.2012.07.013

    Article  CAS  Google Scholar 

  42. Ajasa MA, Bello OM, Ibrahim OM, Ogunwande AI, Olawore ON (2004) Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem 85:67–71

    Article  CAS  Google Scholar 

  43. Gajalakshmi S, Iswarya V, Ashwini R, Divya G, Mythili S, Sathiavelu A (2012) Evaluation of heavy metals in medicinal plants growing in Vellore District. Eur J Exp Biol 5:1457–1461

    Google Scholar 

  44. Chizzola R, Michitsch H, Franz C (2003) Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. Eur Food Res Technol 216(5):407–411

    Article  CAS  Google Scholar 

  45. Danezis GP, Georgiou CA (2022) Elemental metabolomics: food elemental assessment could reveal geographical origin. Curr Opin Food Sci 44:100812. https://doi.org/10.1016/j.cofs.2022.100812

    Article  CAS  Google Scholar 

  46. Madrid D, Cornu S, Bourennane H, Baize D, Ratié C, King D (2020) Effect of agricultural practices on trace-element distribution in soil. Commun Soil Sci Plant Anal 38:473–491

    Google Scholar 

  47. Srivastava SK, Rai V, Srivastava M, Rawat AKS, Mehrotra S (2006) Estimation of heavy metals in different Berberis species and its market samples. Environ Monit Assess 116(1–3):315–320

    Article  CAS  PubMed  Google Scholar 

  48. Angelova VR, Babrikov TD, Ivanov KI (2019) Bioaccumulation and distribution of lead, zinc, and cadmium in crops of Solanaceae family. Commun Soil Sci Plant Anal 40:2248–2263

    Article  Google Scholar 

  49. Xu D, Chen Z, Sun K, Yan D, Kang M, Zhao Y (2019) Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicol Environ Saf 97:147–153

    Article  Google Scholar 

  50. Bawa U, Abdulhameed A, Nayaya AJ, Ezra AG, Jibrin M (2021) Bioaccumulation factor of heavy metals in some crops grown in plateau state Nigeria. Biol Life Sci Forum 4(1):12. https://doi.org/10.3390/IECPS2020-08737

    Article  Google Scholar 

  51. Rajakaruna N (2018) Distribution of heavy metals in tannery effluent polluted soils of Tamil Nadu, India. Bull Environ Contamin Toxicol 60:142–150

    Google Scholar 

  52. Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  PubMed  Google Scholar 

  53. Giacomino A, Malandrino M, Colombo ML, Miaglia S, Maimone P, Blancato S, Conca E, Abollino O (2016) Metal content in dandelion (Taraxacum officinale) leaves: influence of vehicular traffic and safety upon consumption as food. J Chem:9842987. https://doi.org/10.1155/2016/9842987

  54. Masarovičová E, Králová K (2017) Phytoremediation management of environmental contaminants. Essential elements and toxic metals in some crops, medicinal plants, and trees. Springer International Publishing AG (eBook) 5 (7). https://doi.org/10.1007/978-3-319-52381-1

    Book  Google Scholar 

  55. Adamczyk-Szabela D, Lisowska K, Wolf WM (2021) Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram. Sci Rep 11:20151. https://doi.org/10.1038/s41598-021-99666-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu IS, Lee JS, Kim SD, Kim YH, Park HW, Ryu HJ, Lee JH, Lee JM, Jung K, Na C, Joung JY, Son CG (2017) Monitoring heavy metals, residual agricultural chemicals and sulfites in traditional herbal decoctions. Complement Altern Med 17:154. https://doi.org/10.1186/s12906-017-1646-y

    Article  CAS  Google Scholar 

  57. Jibrin M, Abdulhameedm A, Nayayam AJ, Ezram AG (2021) Health risk effect of heavy metals from pesticides in vegetables and soils: a review. DUJOPAS 7(3b):24–32

    Article  Google Scholar 

  58. European Pharmacopoeia, EP, (2006) Applicable to medicinal plant materials included in the European pharmacopoeia, 5th ed, PHARMEUROPA 18 (4).

  59. Matulevičiūtė D (2016) The role of willowherbs (Epilobium) in the recovery of vegetation cover a year after use of herbicide: a case study from Central Lithuania. Bot Lith 22(2):101–112

    Google Scholar 

  60. Mumtaz M, Qadir A, Mahmood A, Mehmood A, Malik RN, Li J, Yousaf Z, Jamil N, Shaikh IA, Ali H, Zhang G (2015) Human health risk assessment, congener specific analysis and spatial distribution pattern of organochlorine pesticides (OCPs) through rice crop from selected districts of Punjab Province, Pakistan. Sci Total Environ 511:354–361

    Article  CAS  PubMed  Google Scholar 

  61. Sweetman AJ, Dalla Valle M, Prevedouros K, Jones KC (2005) The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data. Chemosphere 60:959972. https://doi.org/10.1016/j.chemosphere.2004.12.074

    Article  CAS  Google Scholar 

  62. Calvelo Pereira R, Camps-Arbestain M, Rodríguez Garrido B, Macías F, Monterroso C (2006) Behaviour of α-, β-, γ-, and δ-hexachlorocyclohexane in the soil–plant system of a contaminated site. Env Pollution 144(1):210–217

    Article  CAS  Google Scholar 

  63. Kaushik G, Satya S, Naik SN (2009) Food processing a tool to pesticide residue dissipation-A review. Food Res Int 42:26–40

    Article  CAS  Google Scholar 

  64. Murtaj B, Nuro A, Salihila J (2018) Organochlorinated pesticides and PCB in some medicinal plants from South-East Albania. IJEPEM 1(2):44–49

    Google Scholar 

  65. Walter K, Vallero DA, Lewis RG (1999) Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33(24):4373–4378

    Article  Google Scholar 

  66. Barber JL, Sweetman AJ, van Wijk D, Jones KC (2005) Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. Sci Total Environ 349(1-3):1–44

    Article  CAS  PubMed  Google Scholar 

  67. Liu CY, Jiang X, Fan JL, Noura Ziadi N (2013) Hexachlorobenzene accumulation in rice plants as affected by farm manure and urea applications in dissimilar soils. Can J Soil Sci 93:631638. https://doi.org/10.4141/CJSS2013-001

    Article  CAS  Google Scholar 

  68. Sosan MB, Adeleye AO, Oyekunle JAO, Udah O, Oloruntunbi PM, Daramola MO, Saka WT (2020) Dietary risk assessment of organochlorine pesticide residues in maize-based complementary breakfast food products in Nigeria. Heliyon 6(12):e05803. https://doi.org/10.1016/j.heliyon.2020.e05803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao P, Mori T, Kamei I, Kondo R (2011) Metabolismof organochlorine pesticide heptachlorand its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. Microbiol Lett 314:140–146

    Article  CAS  Google Scholar 

  70. Unyimadu JP, Osibanjo O, Babayemi JO (2019) Concentration and distribution of organochlorine pesticides in sediments of the Niger River Nigeria. J Health Pollut 9(22):190606. https://doi.org/10.5696/2156-9614-9.22.190606

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li Y, Zhang Q, Ji D, Wang T, Wang Y, Wang P, Ding L, Jiang G (2009) Levels and vertical distributions of PCBs, PBDEs, and OCPs in the atmospheric boundary layer: observation from the Beijing 325-m meteorological tower. Environ Sci Technol 43(4):1030–1035. https://doi.org/10.1021/es802138w

    Article  CAS  PubMed  Google Scholar 

  72. Doong RA, Sun YC, Liao PL, Peng CK, Wu SC (2002) Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere 48(2):237–246

    Article  CAS  PubMed  Google Scholar 

  73. Siraj J, Mekonen S, Astatkie H, Gure A (2021) Organochlorine pesticide residues in tea and their potential risks to consumers in Ethiopia. Heliyon 7:e07667. https://doi.org/10.1016/j.heliyon.2021.e07667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amirahmadi M, Shoeibi S, Abdollahi M, Rastegar H, Khosrokhavar R, Hamedani MP (2013) Monitoring of some pesticides residue in consumed tea in Tehran market Iran. J Environ Heal Sci Eng 10(1):9. https://doi.org/10.1186/1735-2746-10-9

    Article  CAS  Google Scholar 

  75. Feng J, Tang H, Chen D, Li L (2015) Monitoring and risk assessment of pesticide residues in tea samples from China. Hum Ecol Risk Assess 21(1):169–183

    Article  CAS  Google Scholar 

  76. Hardy A (1996) On the number of clusters. Comput Stat Data Anal 23(1):83–96

    Article  Google Scholar 

  77. Kelley LA, Gardner SP, Sutcliffe MJ (1996) An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng Des Sel 9(11):1063–1065

    Article  CAS  Google Scholar 

Download references

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MMB: sampling, formal analysis, investigation, supervision; SB: validation, visualisation, writing — original draft; CB: statistical data analysis; NL: methodology; DV: visualisation, supervision; VC: investigation, validation; DAV: methodology, validation; MDR: review and editing.

Corresponding author

Correspondence to Semaghiul Birghila.

Ethics declarations

Ethics Approval

The authors declare that ethics approval was not required for this research.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bratu, M.M., Birghila, S., Birghila, C. et al. Correlation Between Toxic Elements and Pesticide Residues in Medicinal Herbs Available in Pharmaceutical Market. Biol Trace Elem Res 201, 5848–5860 (2023). https://doi.org/10.1007/s12011-023-03642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03642-y

Keywords

Navigation