Skip to main content

Advertisement

Log in

Fluoride Exposure Provokes Mitochondria-Mediated Apoptosis and Increases Mitophagy in Osteocytes via Increasing ROS Production

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluoride is a persistent environmental pollutant, and its excessive intake causes skeletal and dental fluorosis. However, few studies focused on the effects of fluoride on osteocytes, making up over 95% of all bone cells. This study aimed to investigate the effect of fluoride on osteocytes in vitro, as well as explore the underlying mechanisms. CCK-8, LDH assay, fluorescent probes, flow cytometry, and western blotting were performed to examine cell viability, apoptosis, mitochondria changes, reactive oxygen species (ROS) and mitochondrial ROS (mtROS), and protein expressions. Results showed that sodium fluoride (NaF) exposure (4, 8 mmol/L) for 24 h inhibited the cell viability of osteocytes MLO-Y4 and promoted G0/G1 phase arrest and increased cell apoptosis. NaF treatment remarkably caused mitochondria damage, loss of MMP, ATP decrease, Cyto c release, and Bax/Bcl-2 ratio increase and elevated the activity of caspase-9 and caspase-3. Furthermore, NaF significantly upregulated the expressions of LC-3II, PINK1, and Parkin and increased autophagy flux and the accumulation of acidic vacuoles, while the p62 level was downregulated. In addition, NaF exposure triggered the production of intracellular ROS and mtROS and increased malondialdehyde (MDA); but superoxide dismutase (SOD) activity and glutathione (GSH) content were decreased. The scavenger N-acetyl-L-cysteine (NAC) significantly reversed NaF-induced apoptosis and mitophagy, suggesting that ROS is responsible for the mitochondrial-mediated apoptosis and mitophagy induced by NaF exposure. These findings provide in vitro evidence that apoptosis and mitophagy are cellular mechanisms for the toxic effect of fluoride on osteocytes, thereby suggesting the potential role of osteocytes in skeletal and dental fluorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data of this study will be made available on reasonable request.

References

  1. Jha SK, Mishra VK, Sharma DK, Damodaran T (2011) Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol 211:121–142. https://doi.org/10.1007/978-1-4419-8011-3_4

    Article  CAS  PubMed  Google Scholar 

  2. Abduweli UD, Goin DE, Martinez-Mier EA, Woodruff T, DenBesten P (2020) Maternal and fetal exposures to fluoride during mid-gestation among pregnant women in northern California. Environ Health-Glob 19:38. https://doi.org/10.1186/s12940-020-00581-2

    Article  CAS  Google Scholar 

  3. Atmaca N, Atmaca HT, Kanici A, Anteplioglu T (2014) Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 70:191–197. https://doi.org/10.1016/j.fct.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  4. Wu L, Fan C, Zhang Z, Zhang X, Lou Q, Guo N, Huang W, Zhang M, Yin F, Guan Z, Yang Y, Gao Y (2021) Association between fluoride exposure and kidney function in adults: a cross-sectional study based on endemic fluorosis area in China. Ecotoxicol Environ Saf 225:112735. https://doi.org/10.1016/j-ecoenv-2021-112735

    Article  CAS  PubMed  Google Scholar 

  5. Quadri JA, Sarwar S, Pinky Kar P, Singh S, Mallick SR, Arava S, Nag TC, Roy TS, Shariff A (2018) Fluoride induced tissue hypercalcemia, IL-17 mediated inflammation and apoptosis lead to cardiomyopathy: ultrastructural and biochemical findings. Toxicology 406–407:44–57. https://doi.org/10.1016/j-tox-2018-05-012

    Article  PubMed  Google Scholar 

  6. Yuan J, Li Q, Niu R, Wang J (2019) Fluoride exposure decreased learning ability and the expressions of the insulin receptor in male mouse hippocampus and olfactory bulb. Chemosphere 224:71–76. https://doi.org/10.1016/j-chemosphere-2019-02-113

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Li Z, Qie M, Zheng R, Shetty J, Wang J (2016) Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice. Food Chem Toxicol 94:103–111. https://doi.org/10.1016/j.fct.2016.05.017

    Article  CAS  PubMed  Google Scholar 

  8. Dhar V, Bhatnagar M (2009) Physiology and toxicity of fluoride. Indian J Dent Res 20(3):350–355. https://doi.org/10.4103/0970-9290-57379

    Article  PubMed  Google Scholar 

  9. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90:552–560. https://doi.org/10.1177/00220-34510-384626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiao L, Liu X, He Y, Zhang J, Huang H, Bian W, Chilufya MM, Zhao Y, Han J (2021) Progress of signaling pathways, stress pathways and epigenetics in the pathogenesis of skeletal fluorosis. Int J Mol Sci 22(21):11932. https://doi.org/10.3390/ijms222111932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang L, Huang W, Wu L, Sun D, Gu W (2020) β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis. Environ Pollut 265(Pt A):114734. https://doi.org/10.1016/j-envpol-2020-114734

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Zhou YL, Zhang XY, Lu P, Li GS (2010) Activation of PERK signaling through fluoride-mediated endoplasmic reticulum stress in OS732 cells. Toxicology 277(1–3):1–5. https://doi.org/10.1016/j-tox-2010-08-006

    Article  CAS  PubMed  Google Scholar 

  13. Gu X, Han D, Chen W, Zhang L, Lin Q, Gao J, Fanning S, Han B (2016) SIRT1-mediated FoxOs pathways protect against apoptosis by promoting autophagy in osteoblast-like MC3T3-E1 cells exposed to sodium fluoride. Oncotarget 7(40):65218–65230. https://doi.org/10.18632/oncotarget-11573

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Zhao Y, Cheng X, Li Y, Xu H, Manthari RK, Wang J (2018) Effects of different Ca2+ level on fluoride-induced apoptosis pathway of endoplasmic reticulum in the rabbit osteoblast in vitro. Food Chem Toxicol 116(Pt B):189–195. https://doi.org/10.1016/j-fct-2018-04-013

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Jiang N, Yu X, Zhao Z, Zhang X, Xu H (2018) The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride. Toxicology 393:73–82. https://doi.org/10.1016/j-tox-2017-11-009

    Article  CAS  PubMed  Google Scholar 

  16. Lv YG, Kang L, Wu G (2016) Fluorosis increases the risk of postmenopausal osteoporosis by stimulating interferon γ. Biochem Biophys Res Commun 479(2):372–379. https://doi.org/10.1016/j-bbrc-2016-09-083

    Article  CAS  PubMed  Google Scholar 

  17. Bonewald LF (2017) The role of the osteocyte in bone and nonbone disease. Endocrinol Metab Clin North Am 46(1):1–18. https://doi.org/10.1016/j-ecl-2016-09-003

    Article  PubMed  Google Scholar 

  18. Komori T (2013) Functions of the osteocyte network in the regulation of bone mass. Cell Tissue Res 352(2):191–198. https://doi.org/10.1007/s00441-012-1546-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ru JY, Wang YF (2020) Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 11:846. https://doi.org/10.1038/s41419-020-03059-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huber C, Collishaw S, Mosley JR, Reeve J, Noble BS (2007) Selective estrogen receptor modulator inhibits osteocyte apoptosis during abrupt estrogen withdrawal: implications for bone quality maintenance. Calcif Tissue Int 81:139–144. https://doi.org/10.1007/s00223-007-9049-6

    Article  CAS  PubMed  Google Scholar 

  21. Storlino G, Colaianni G, Sanesi L, Lippo L, Brunetti G, Errede M, Colucci S, Passeri G, Grano M (2020) Irisin prevents disuse-induced osteocyte apoptosis. J Bone Miner Res 35:766–775. https://doi.org/10.1002/jbmr-3944

    Article  CAS  PubMed  Google Scholar 

  22. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM, LeBrasseur NK, Drake MT, Pignolo RJ, Pirtskhalava T, Tchkonia T, Oursler MJ, Kirkland JL, Khosla S (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23(9):1072–1079. https://doi.org/10.1038/nm.4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Yan M, Niu W, Mao H, Yang P, Xu B, Sun Y (2022) Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis in amouse osteolysis model. Int Immunopharmacol 107:108699. https://doi.org/10.1016/j.intimp.2022.108699

    Article  CAS  PubMed  Google Scholar 

  24. Jiang N, Guo F, Xu W, Zhang Z, Jin H, Shi L, Zhang X, Gao J, Xu H (2020) Effect of fluoride on osteocyte-driven osteoclastic differentiation. Toxicology 436:152429. https://doi.org/10.1016/j-tox-2020-152429

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Zhu Y, Zhang D, Yan Z, Zhao Y, Manthari RK, Cheng X, Wang J, Wang J (2021) Effects of different doses of calcium on the mitochondrial apoptotic pathway and Rho/ROCK signaling pathway in the bone of fluorosis rats. Biol Trace Elem Res 199(5):1919–1928. https://doi.org/10.1007/s12011-020-02305-6

    Article  CAS  PubMed  Google Scholar 

  26. Cui Y, Song M, Xiao B, Liu M, Liu P, Han Y, Shao B, Li Y (2021) ROS-mediated mitophagy and apoptosis are involved in aluminum-induced femoral impairment in mice. Chem Biol Interact 349:109663. https://doi.org/10.1016/j.cbi.2021.109663

    Article  CAS  PubMed  Google Scholar 

  27. Yin F, Yan J, Zhao Y, Guo KJ, Zhang ZL, Li AP, Meng CY, Guo L (2019) Bone marrow mesenchymal stem cells repair Cr (VI)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. Ecotoxicol Environ Saf 176:234–241. https://doi.org/10.1016/j.ecoenv.2019.03.093

    Article  CAS  PubMed  Google Scholar 

  28. Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC (2022) Effects of fluoride exposure on mitochondrial function: energy metabolism, dynamics, biogenesis and mitophagy. Environ Toxicol Pharmacol 94:103916. https://doi.org/10.1016/j.etap.2022.103916

    Article  CAS  PubMed  Google Scholar 

  29. Shen Y, Wu L, Qin D, Xia Y, Zhou Z, Zhang X, Wu X (2018) Carbon black suppresses the osteogenesis of mesenchymal stem cells: the role of mitochondria. Part Fibre Toxicol 15(1):16. https://doi.org/10.1186/s12989-018-0253-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221. https://doi.org/10.1083/jcb-200910140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ivankovic D, Chau KY, Schapira AH, Gegg ME (2016) Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem 136(2):388–402. https://doi.org/10.1111/jnc-13412

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Ma H, Sun J, Zheng T, Zhao P, Li H, Yang M (2022) Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol Trace Elem Res 200(1):298–307. https://doi.org/10.1007/s12011-021-02627-z

    Article  CAS  PubMed  Google Scholar 

  33. Yang CN, Kok SH, Wang HW, Chang JZ, Lai EH, Shun CT, Yang H, Chen MH, Hong CY, Lin SK (2019) Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis. Int Endod J 52(5):676–688. https://doi.org/10.1111/iej-13055

    Article  PubMed  Google Scholar 

  34. Xu K, Lu C, Ren X, Wang J, Xu P, Zhang Y (2021) Overexpression of HIF-1α enhances the protective effect of mitophagy on steroid-induced osteocytes apoptosis. Environ Toxicol 36(11):2123–2137. https://doi.org/10.1002/tox-23327

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Yan M, Shan W, Zhang T, Shen Y, Zhu R, Fang J, Mao H (2022) Bisphenol A induces pyroptotic cell death via ROS/NLRP3/Caspase-1 pathway in osteocytes MLO-Y4. Food Chem Toxicol. https://doi.org/10.1016/j-fct-2021-112772

  36. Bratic I, Trifunovic A (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797(6–7):961–967. https://doi.org/10.1016/j.bbabio.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  37. Zhang T, Shen Y, Zhu R, Shan W, Li Y, Yan M, Zhang Y (2022) Benzo[a]pyrene exposure promotes RIP1-mediated necroptotic death of osteocytes and the JNK/IL-18 pathway activation via generation of reactive oxygen species. Toxicology 476:153244. https://doi.org/10.1016/j-tox-2022-153244

    Article  CAS  PubMed  Google Scholar 

  38. Yan X, Wang L, Yang X, Qiu Y, Tian X, Lv Y, Tian F, Song G, Wang T (2017) Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway. Chemosphere 182:159–165. https://doi.org/10.1016/j-chemosphere-2017-05-002

    Article  CAS  PubMed  Google Scholar 

  39. Lv S, Zhang Y, Yan M, Mao H, Pan C, Gan M, Fan J, Wang G (2016) Inhibition of osteolysis after local administration of osthole in a TCP particles-induced osteolysis model. Int Orthop 40(7):1545–1552. https://doi.org/10.1007/s00264-015-3021-2

    Article  PubMed  Google Scholar 

  40. Yin J, Ni B, Liao WG, Gao YQ (2018) Hypoxia-induced apoptosis of mouse spermatocytes is mediated by HIF-1α through a death receptor pathway and a mitochondrial pathway. J Cell Physiol 233(2):1146–1155. https://doi.org/10.1002/jcp.25974

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Ni H, Xu W, Wu B, Xie T, Zhang C, Cheng J, Li Z, Tao L, Zhang Y (2021) Difenoconazole induces oxidative DNA damage and mitochondria mediated apoptosis in SH-SY5Y cells. Chemosphere 283:131160. https://doi.org/10.1016/j-chemosphere-2021-131160

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, Wang Y, Xu R (2020) Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/caspase-9/caspase-3 signaling pathway in vitro. Biomed Pharmacother 122:109712. https://doi.org/10.1016/j-biopha-2019-109712

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Wang J, Zhang J, Sun Z, Niu R, Manthari RK, Ommati MM, Wang S, Wang J (2022) Fluoride exposure induces mitochondrial damage and mitophagy via activation of the IL-17A pathway in hepatocytes. Sci Total Environ 804:150184. https://doi.org/10.1016/j.scitotenv.2021.15018

    Article  CAS  PubMed  Google Scholar 

  44. Fina BL, Lombarte M, Rigalli JP, Rigalli A (2014) Fluoride increases superoxide production and impairs the respiratory chain in ROS 17/2.8 osteoblastic cells. PLoS One 9(6):e100768. https://doi.org/10.1371/journal-pone-0100768

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suzuki M, Bandoski C, Bartlett JD (2015) Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med 89:369–378. https://doi.org/10.1016/j.freeradbiomed.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q (2020) The role of autophagy and mitophagy in bone metabolic disorders. Int J Biol Sci 16(14):2675–2691. https://doi.org/10.7150/ijbs-46627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gu X, Wang Z, Gao J, Han D, Zhang L, Chen P, Luo G, Han B (2019) SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to fluoride. Toxicol In Vitro 57:28–38. https://doi.org/10.1016/j-tiv-2019-02-006

    Article  CAS  PubMed  Google Scholar 

  48. Li R, Gong Z, Yu Y, Niu R, Bian S, Sun Z (2022) Alleviative effects of exercise on bone remodeling in fluorosis mice. Biol Trace Elem Res 200(3):1248–1261. https://doi.org/10.1007/s12011-021-02741-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (LY21H060001), the National Natural Science Foundation of China (30900301), and the National Undergraduate Innovation and Entrepreneurship Training Program (202110349006).

Author information

Authors and Affiliations

Authors

Contributions

Yun Zhang conceived and designed the experiments. Fanhe Dong, Zihan Wang, Bingbing Xu, and Qiqi Wang carried out the experiments. Tao Zhang and Qiao Lin processed the data. Yun Zhang and Fanhe Dong wrote the paper. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, F., Wang, Z. et al. Fluoride Exposure Provokes Mitochondria-Mediated Apoptosis and Increases Mitophagy in Osteocytes via Increasing ROS Production. Biol Trace Elem Res 201, 3994–4007 (2023). https://doi.org/10.1007/s12011-022-03450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03450-w

Keywords

Navigation