Skip to main content
Log in

Combination of Phycocyanin, Zinc, and Selenium Improves Survival Rate and Inflammation in the Lipopolysaccharide-Galactosamine Mouse Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Sepsis is related to systemic inflammation and oxidative stress, the primary causes of death in intensive care units. Severe functional abnormalities in numerous organs can arise due to sepsis, with acute lung damage being the most common and significant morbidity. Spirulina, blue-green algae with high protein, vitamins, phycocyanin, and antioxidant content, shows anti-inflammatory properties by decreasing the release of cytokines. In addition, zinc (Zn) and selenium (Se) act as an antioxidant by inhibiting the oxidation of macromolecules, as well as the inhibition of the inflammatory response. The current study aimed to examine the combined properties of Zn, Se, and phycocyanin oligopeptides (ZnSePO) against lipopolysaccharide-D-galactosamine (LPS-GalN)-induced septic lung injury through survival rate, inflammatory, and histopathological changes in Balb/c mice. A total of 30 mice were allocated into three groups: normal control, LPS-GalN (100 ng of LPS plus 8 mg of D-galactosamine), LPS-GalN + ZnSePO (ZnPic, 52.5 µg/mL; SeMet, 0.02 µg/mL; and phycocyanin oligopeptide (PO), 2.00 mg/mL; at 1 h before the injection of LPS-GalN). Lung tissue from mice revealed noticeable inflammatory reactions and typical interstitial fibrosis after the LPS-GalN challenge. LPS-GalN-induced increased mortality rate and levels of IL-1, IL-6, IL-10, TGF-β, TNF-α, and NF-κB in lung tissue. Moreover, treatment of septic mice LPS-GalN + ZnSePO reduced mortality rates and inflammatory responses. ZnSePO considerably influenced tissue cytokine levels, contributing to its capacity to minimize acute lung injury (ALI) and pulmonary inflammation and prevent pulmonary edema formation in LPS-GalN-injected mice. In conclusion, ZnSePO treatment enhanced the survival rate of endotoxemia mice via improving inflammation and oxidative stress, indicating a possible therapeutic effect for patients with septic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P’erez-Hernandez EG, Delgado-Coello B, Luna-Reyes I, Mas-Oliva J (2021) New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomed Pharmacother 141:111890. https://doi.org/10.1016/j.biopha.2021.111890

    Article  CAS  Google Scholar 

  2. Seemann S, Zohles F, Lupp A (2017) Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci 24(1):60. https://doi.org/10.1186/s12929-017-0370-8

    Article  CAS  Google Scholar 

  3. Azambuja JH, Mancuso RI, Della Via FI, Torello CO, Saad STO (2022) Protective effect of green tea and epigallocatechin-3-gallate in a LPS-induced systemic inflammation model. J Nutr Biochem 101:108920. https://doi.org/10.1016/j.jnutbio.2021.108920

    Article  CAS  Google Scholar 

  4. Keller M, Manzocchi E, Rentsch D, Lugarà R, Giller K (2021) Antioxidant and inflammatory gene expression profiles of bovine peripheral blood mononuclear cells in response to Arthrospira platensis before and after LPS challenge. Antioxidants (Basel) 10(5):814. https://doi.org/10.3390/antiox10050814

    Article  CAS  Google Scholar 

  5. Recknagel P, Gonnert FA, Halilbasic E, Gajda M, Jbeily N, Lupp A, Rubio I, Claus RA, Kortgen A, Trauner M, Singer M, Bauer M (2013) Mechanisms and functional consequences of liver failure substantially differ between endotoxaemia and faecal peritonitis in rats. Liver Int 33(2):283–293. https://doi.org/10.1111/liv.12012

    Article  CAS  Google Scholar 

  6. Hajati H, Zaghari M, Oliveira HC (2020) Arthrospira (Spirulina) Platensis can be considered as a probiotic alternative to reduce heat stress in laying Japanese quails. Braz J Poult Sci 22:1–8. https://doi.org/10.1590/1806-9061-2018-0977

    Article  Google Scholar 

  7. Pham TX, Lee Y, Bae M, Hu S, Kang H (2019) Spirulina supplementation in a mouse model of diet-induced liver fibrosis reduced the pro-inflammatory response of splenocytes. Br J Nutr 121:748–755. https://doi.org/10.1017/S0007114519000126

    Article  CAS  Google Scholar 

  8. Grover P, Bhatnagar A, Kumari N, Bhatt AN, Nishad DK, Purkayastha J (2021) C-Phycocyanin-a novel protein from Spirulina platensis- in vivo toxicity, antioxidant and immunomodulatory studies. Saudi J Biol Sci 28(3):1853–1859. https://doi.org/10.1016/j.sjbs.2020.12.037

    Article  CAS  Google Scholar 

  9. Silveira ST, Burkert JF, Costa JAV, Burkert CAV, Kalil SJ (2007) Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour Technol 98(8):1629–1634. https://doi.org/10.1016/j.biortech.2006.05.050

    Article  CAS  Google Scholar 

  10. Wang H, Liu Y, Gao X, Carter CL, Liu ZR (2007) The recombinant beta subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett 247(1):150–158. https://doi.org/10.1016/j.canlet.2006.04.002

    Article  CAS  Google Scholar 

  11. Bannu SM, Lomada D, Gulla S, Chandrasekhar T, Reddanna P, Reddy MC (2019) Potential therapeutic applications of C-phycocyanin. Curr Drug Metab 20(12):967–976. https://doi.org/10.2174/1389200220666191127110857

    Article  CAS  Google Scholar 

  12. Hamedifard Z, Farrokhian A, Reiner Ž, Bahmani F, Asemi Z, Ghotbi M, Taghizadeh M (2020) The effects of combined magnesium and zinc supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Lipids Health Dis 19(1):112. https://doi.org/10.1186/s12944-020-01298-4

    Article  CAS  Google Scholar 

  13. Visalakshy J, Surendran S, Pillai MPG, Rajendran A, Sherif AA (2017) Could plasma zinc be a predictor for mortality and severity in sepsis syndrome? Int J Res Med Sci 5(9):3929–3934. https://doi.org/10.18203/2320-6012.ijrms20173956

    Article  Google Scholar 

  14. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133:1452S-S1456. https://doi.org/10.1093/jn/133.5.1452S

    Article  CAS  Google Scholar 

  15. Al-Rasheed NM, Attia HA, Mohamed RA, Al-Rasheed NM, Al-Amin MA (2013) Preventive effects of selenium yeast, chromium picolinate, zinc sulfate and their combination on oxidative stress, inflammation, impaired angiogenesis and atherogenesis in myocardial infarction in rats. J Pharm Pharm Sci 16:848–867. https://doi.org/10.18433/j34c7n

    Article  Google Scholar 

  16. Ganatra HA, Varisco BM, Harmon K, Lahni P, Opoka A, Wong HR (2017) Zinc supplementation leads to immune modulation and improved survival in a juvenile model of murine sepsis. Innate Immun 23(1):67–76. https://doi.org/10.1177/1753425916677073

    Article  CAS  Google Scholar 

  17. Li M, Zhang Y, Li S (2020) Effects of selenium deficiency on testis development and autophagy in chicks. Ital J Anim Sci 19(1):753–761. https://doi.org/10.1080/1828051X.2020.1786739

    Article  CAS  Google Scholar 

  18. Cao C, Li X, Qin L, Luo J, Zhang M, Ou Z, Wang K (2018) High selenium yeast mitigates aluminum-induced cerebral inflammation by increasing oxidative stress and blocking NO production. Biometals 31(5):835–843. https://doi.org/10.1007/s10534-018-0128-0

    Article  CAS  Google Scholar 

  19. Liu J, Wang S, Zhang Q, Li X, Xu S (2020) Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress. Metallomics 12(1):54–64. https://doi.org/10.1039/c9mt00216b

    Article  CAS  Google Scholar 

  20. Fan R, Yao H, Cao C, Zhao X, Khalid A, Zhao J, Zhang Z, Xu S (2017) Gene silencing of selenoprotein K induces inflammatory response and activates heat shock proteins expression in chicken myoblasts. Biol Trace Elem Res 180(1):135–145. https://doi.org/10.1007/s12011-017-0979-1

    Article  CAS  Google Scholar 

  21. Cao C, Luo J, Li X, Zhang M, Zhang H, Zhang J, Wang K (2018) Selenium-rich yeast protects against aluminum-induced renal inflammation and ionic disturbances. Biol Trace Elem Res 186(2):467–473. https://doi.org/10.1007/s12011-018-1324-z

    Article  CAS  Google Scholar 

  22. Qu J, Wang W, Zhang Q, Li S (2020) Inhibition of lipopolysaccharide-induced inflammation of chicken liver tissue by selenomethionine via TLR4-NF-κB-NLRP3 signaling pathway. Biol Trace Elem Res 195(1):205–214. https://doi.org/10.1007/s12011-019-01841-0

    Article  CAS  Google Scholar 

  23. Thoen RU, Barther NN, Schemitt E, Bona S, Fernandes S, Coral G, Marroni NP, Tovo C, Guedes RP, Porawski M (2019) Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Appl Physiol Nutr Metab 44(6):580–586. https://doi.org/10.1139/apnm-2018-0519

    Article  CAS  Google Scholar 

  24. Chen T, Wong YS (2008) In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. J Agric Food Chem 56(12):4352–4358. https://doi.org/10.1021/jf073399k

    Article  CAS  Google Scholar 

  25. Uckun FM, Carlson J, Orhan C, Powell J, Pizzimenti NM, Hv W, Ozercan IH, Mand V, Sahin K (2020) Rejuveinix shows a favorable clinical safety profile in human subjects and exhibits potent preclinical protective activity in the lipopolysaccharide-galactosamine mouse model of acute respiratory distress syndrome and multi-organ failure. Front Pharmacol 11:594321. https://doi.org/10.3389/fphar.2020.594321

    Article  CAS  Google Scholar 

  26. Korneev KV (2019) Mouse models of sepsis and septic shock. Mol Biol (Mosk) 53(5):799–814. https://doi.org/10.1134/S0026898419050100

    Article  CAS  Google Scholar 

  27. Sahin K, Orhan C, Kucuk O, Tuzcu M, Sahin N, Ozercan IH, Sylla S, Ojalvo SP, Komorowski JR (2022) Effects of magnesium picolinate, zinc picolinate, and selenomethionine co-supplementation on reproductive hormones, and glucose and lipid metabolism-related protein expressions in male rats fed a high-fat diet. Food Chem: Mole Sci 4:100081. https://doi.org/10.1016/j.fochms.2022.100081

    Article  CAS  Google Scholar 

  28. Benedetti S, Benvenuti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75(19):2353–2362. https://doi.org/10.1016/j.lfs.2004.06.004

    Article  CAS  Google Scholar 

  29. Hassan F, Mobarez S, Mohamed M, Attia Y, Mekawy A, Mahrose K (2021) Zinc and/or selenium enriched spirulina as antioxidants in growing rabbit diets to alleviate the deleterious impacts of heat stress during summer season. Animals (Basel) 11(3):756. https://doi.org/10.3390/ani11030756

    Article  Google Scholar 

  30. Castel T, Theron M, Pichavant-Rafini K, Guernec A, Joublin-Delavat A, Gueguen B, Leon K (2021) Can selenium-enriched spirulina supplementation ameliorate sepsis outcomes in selenium-deficient animals? Physiol Rep 9(14):e14933. https://doi.org/10.14814/phy2.14933

    Article  CAS  Google Scholar 

  31. Finamore A, Palmery M, Bensehaila S, Peluso I (2017) Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxid Med Cell Longev 2017:3247528. https://doi.org/10.1155/2017/3247528

    Article  CAS  Google Scholar 

  32. Gargouri M, Soussi A, Akrouti A, Magné C, El Feki A (2018) Ameliorative effects of Spirulina platensis against lead-induced nephrotoxicity in newborn rats: modulation of oxidative stress and histopathological changes. EXCLI J 17:215–232. https://doi.org/10.17179/excli2017-1016

    Article  Google Scholar 

  33. Nasirian F, Dadkhah M, Moradi-kor N, Obeidavi Z (2018) Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metabo Syndr Obes 11:375–380. https://doi.org/10.2147/DMSO.S172104

    Article  CAS  Google Scholar 

  34. Abdel-Daim M, El-Bialy BE, Rahman HGA, Radi AM, Hefny HA, Hassan AM (2016) Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: biochemical and histopathological studies. Biomed Pharmacother 77:79–85. https://doi.org/10.1016/j.biopha.2015.12.003

    Article  CAS  Google Scholar 

  35. Ou Y, Lin L, Yang X, Pan Q, Cheng X (2013) Antidiabetic potential of phycocyanin: effects on KKAy mice. Pharm Biol 51:539–544. https://doi.org/10.3109/13880209.2012.747545

    Article  CAS  Google Scholar 

  36. Labunskyy VM, Hatfield DL, Vadim N, Gladyshe VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  Google Scholar 

  37. Prasad AS, Bao B (2019) Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants 8:164. https://doi.org/10.3390/antiox8060164

    Article  CAS  Google Scholar 

  38. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130(5S):1447S-S1454. https://doi.org/10.1093/jn/130.5.1447S

    Article  CAS  Google Scholar 

  39. Alissa EM, Bahijri SM, Lamb DJ, Gordon A, Ferns GAA (2004) The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int J Exp Pathol 85(5):265–275. https://doi.org/10.1111/j.0959-9673.2004.00392.x

    Article  CAS  Google Scholar 

  40. Utomo MT, Sudarmo SM, Sudiana K (2020) Zinc supplementation in cytokine regulation during LPS-induced sepsis in rodent. J Int Dent Med Res 13(1):46–50

    Google Scholar 

  41. Michalak I, Mahrose KM (2020) Seaweeds, intact and processed, as a valuable component of poultry feed. J Mar Sci Eng 8(8):620. https://doi.org/10.3390/jmse8080620

    Article  Google Scholar 

  42. Gabr GA, El-Sayed SM, Hikal MS (2020) Antioxidant activities of phycocyanin: a bioactive compound from Spirulina platensis. J Pharm Res Int 32(2):73–85. https://doi.org/10.9734/JPRI/2020/v32i230407

    Article  Google Scholar 

  43. Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S (2019) Atmospheric H2S triggers immune damage by activating the TLR-7/MyD88/NF-kB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237:124427. https://doi.org/10.1016/j.chemosphere.2019.124427

    Article  CAS  Google Scholar 

  44. Wessels I, Cousins RJ (2015) Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am J Physiol Gastrointest Liver Physiol 309:G768–G778. https://doi.org/10.1152/ajpgi.00179.2015

    Article  CAS  Google Scholar 

  45. Shalihat A, Hasanah AN, Mutakin LR, Budiman A, Gozali D (2021) The role of selenium in cell survival and its correlation with protective effects against cardiovascular disease: a literature review. Biomed Pharmacother 134:111125. https://doi.org/10.1016/j.biopha.2020.111125

    Article  CAS  Google Scholar 

  46. Huang TS, Shyu YC, Chen HY, Lin LM, Lo CY, Yuan SS, Chen PJ (2013) Effect of parenteral selenium supplementation in critically ill patients: a systematic review and metaanalysis. PLoS ONE 8(1):e54431. https://doi.org/10.1371/journal.pone.0054431

    Article  CAS  Google Scholar 

  47. Landucci F, Mancinelli P, De Gaudio AR (2014) Selenium supplementation in critically ill patients: a systematic review and meta-analysis. J Crit Care 29(1):150–156. https://doi.org/10.1016/j.jcrc.2013.08.017

    Article  CAS  Google Scholar 

  48. Nithiananthan S, Crawford A, Knock JC, Lambert DW, Whawell SA (2017) Physiological fluid flow moderates fibroblast responses to TGF-β1. J Cell Biochem 118:878–890. https://doi.org/10.1002/jcb.25767

    Article  CAS  Google Scholar 

  49. Mahmoud YI, Abd El-Ghffar EA (2019) Spirulina ameliorates aspirin-induced gastric ulcer in albino mice by alleviating oxidative stress and inflammation. Biomed Pharmacother 109:314–321. https://doi.org/10.1016/j.biopha.2018.10.118

    Article  CAS  Google Scholar 

  50. Luo J, Li X, Li X, He Y, Zhang M, Cao C, Wang K (2018) Selenium-rich yeast protects against aluminum-induced peroxidation of lipide and inflammation in mice liver. Biometals 31(6):1051–1059. https://doi.org/10.1007/s10534-018-0150-2

    Article  CAS  Google Scholar 

  51. Wang J, Liu Z, He X, Lian S, Liang J, Yu D, Sun D, Wu R (2018) Selenium deficiency induces duodenal villi cell apoptosis via an oxidative stress-induced mitochondrial apoptosis pathway and an inflammatory signaling-induced death receptor pathway. Metallomics 10:1390–1400. https://doi.org/10.1039/c8mt00142a

    Article  CAS  Google Scholar 

  52. Wang X, Yang B, Cao HL, Wang RY, Lu ZY, Chi RF, Li B (2021) Selenium supplementation protects against lipopolysaccharide-induced heart injury via sting pathway in mice. Biol Trace Elem Res 199(5):1885–1892. https://doi.org/10.1007/s12011-020-02295-5

    Article  CAS  Google Scholar 

  53. Knoell DL, Julian MW, Bao S, Besecker B, Macre JE, Leikauf GD, DiSilvestro RA, Crouser ED (2009) Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis. Crit Care Med 37(4):1380–1388. https://doi.org/10.1097/CCM.0b013e31819cefe4

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by KOSGEB (Elazig, Turkey) and the Turkish Academy of Sciences (KS).

Author information

Authors and Affiliations

Authors

Contributions

K.S. designed the study; P.O., B.E., and C.O. performed the experiment; P.O. drafted the study; and K.S. edited the manuscript.

Corresponding author

Correspondence to Kazim Sahin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oner, P., Er, B., Orhan, C. et al. Combination of Phycocyanin, Zinc, and Selenium Improves Survival Rate and Inflammation in the Lipopolysaccharide-Galactosamine Mouse Model. Biol Trace Elem Res 201, 1377–1387 (2023). https://doi.org/10.1007/s12011-022-03433-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03433-x

Keywords

Navigation