Skip to main content
Log in

Hair Trace Elements and Mineral Content in Moroccan Children with Autism Spectrum Disorder: a Case–Control Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The prevalence of autism spectrum disorder (ASD) around the world continues to increase while the pathophysiology remains insufficiently elucidated. Genetics, environment, and epigenetic changes are often implicated. Abnormal level in trace elements and minerals is among environmental factors assumed to be involved. The purpose of this article is to assess hair concentrations of toxic and essential elements in children with ASD and children with neurotypical development in the city of Marrakech. Two hundred and twenty-seven children (107 with ASD and 120 controls) aged 3 to 14 years old were recruited. The results of analysis by ICP-MS showed a significant decrease in hair levels of copper, zinc, iron, and selenium (25%, 13%, 17%, 11%) of children with ASD. The most significantly reduced concentrations in children with ASD are that of manganese by 34%. Hair aluminum level was significantly elevated by 29% in ASD compared to controls. Multiple linear regression analysis revealed that copper, selenium, and iron content in hair were significantly inversely associated with ASD, similarly, hair aluminum content was significantly associated with ASD. Adjusted model for demographic parameters increased the predictive ability of the model, father’s age was a significant predictor. In addition, ASD and gender were significant predictors of hair levels of aluminum, selenium, and manganese.

These results support the hypothesis of the disparity of trace elements and minerals levels in children with ASD and highlight the potential interest of micronutrient supplementation in the eventual improvement of ASD symptoms. Future research should explore the pathophysiology of these micronutrient deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due the personal nature of the data collected or analyzed and so as not to compromise the privacy of individuals but are available from the corresponding author on reasonable request.

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-V-TR. American Psychiatric Association, Washington, DC

    Book  Google Scholar 

  2. Wiśniowiecka-Kowalnik B, Nowakowska BA (2019) Genetics and epigenetics of autism spectrum disorder—current evidence in the field. J Appl Genet 60(1):37–47. https://doi.org/10.1007/s13353-018-00480-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calabrese V et al (2016) Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders: hormetic dose response and neuroprotection in ASD. J Neurosci Res 94(12):1488–1498. https://doi.org/10.1002/jnr.23893

    Article  CAS  PubMed  Google Scholar 

  4. Homs A et al (2016) Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiatry 6(7):e855–e855. https://doi.org/10.1038/tp.2016.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jafari Mohammadabadi H, Rahmatian A, Sayehmiri F, Rafiei M (2020) The relationship between the level of copper, lead, mercury and autism disorders: a meta-analysis. Pediatr Health Med Ther 11:369–378. https://doi.org/10.2147/PHMT.S210042

    Article  Google Scholar 

  6. Rashaid AHB, Nusair SD, Alqhazo MT, Adams JB, Abu-Dalo MA, Bashtawi MA (2021) Heavy metals and trace elements in scalp hair samples of children with severe autism spectrum disorder: a case-control study on Jordanian children. J Trace Elem Me. Biol 67:126790. https://doi.org/10.1016/j.jtemb.2021.126790

    Article  CAS  Google Scholar 

  7. Zhang J et al (2021) Trace elements in children with autism spectrum disorder: a meta-analysis based on case-control studies. J. Trace Elem. Med. Biol 67:126782. https://doi.org/10.1016/j.jtemb.2021.126782

    Article  CAS  PubMed  Google Scholar 

  8. Behl S, Mehta S, Pandey MK (2020) Abnormal levels of metal micronutrients and autism spectrum disorder: a perspective review. Front Mol Neurosci 13:586209. https://doi.org/10.3389/fnmol.2020.586209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mehta SQ et al (2021) Evaluation of Zn, Cu, and Se levels in the North American Autism spectrum disorder population. Front Mol Neurosci 14:665686. https://doi.org/10.3389/fnmol.2021.665686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saghazadeh A, Rezaei N (2017) Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuropsychopharmacol Biol Psychiatry 79:340–368. https://doi.org/10.1016/j.pnpbp.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  11. Caito S, et Aschner M (2017) « Developmental neurotoxicity of lead », in Neurotoxicity of Metals, M. Aschner et L. G. Costa, Éd. Cham: Springer International Publishing 18:3‑12 https://doi.org/10.1007/978-3-319-60189-2_1

  12. Fruh V et al (2019) Prenatal lead exposure and childhood executive function and behavioral difficulties in project viva. NeuroToxicology 75:105–115. https://doi.org/10.1016/j.neuro.2019.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Surkan PJ, Zhang A, Trachtenberg F, Daniel DB, Bellinger DC (2008) neuropsychological function in children with blood lead levels. Neurotoxicology 28(6):1170–1177. https://doi.org/10.1016/j.neuro.2007.07.007

    Article  CAS  Google Scholar 

  14. Dickerson AS et al (2016) Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ Monit Assess 188(7):407. https://doi.org/10.1007/s10661-016-5405-1

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Li H, Li Y, Liu Y, Zhao Z (2018) Blood mercury, arsenic, cadmium, and lead in children with autism spectrum disorder. Biol Trace Elem Res 181(1):31–37. https://doi.org/10.1007/s12011-017-1002-6

    Article  CAS  PubMed  Google Scholar 

  16. Mostafa GA, Bjørklund G, Urbina MA, AL-Ayadhi LY (2016) The levels of blood mercury and inflammatory-related neuropeptides in the serum are correlated in children with autism spectrum disorder. Metab Brain Dis 31(3):593–599. https://doi.org/10.1007/s11011-015-9784-8

    Article  CAS  PubMed  Google Scholar 

  17. Mold M, Umar D, King A, Exley C (2018) Aluminium in brain tissue in autism. J. Trace Elem Med Biol 46:76–82. https://doi.org/10.1016/j.jtemb.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  18. Sealey LA et al (2016) Environmental factors in the development of autism spectrum disorders. Environ Int 88:288–298. https://doi.org/10.1016/j.envint.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  19. Dickerson AS, Rotem RS, Christian MA, Nguyen VT, Specht AJ (2017) Potential sex differences relative to autism spectrum disorder and metals. Curr Environ Health Rep 4(4):405–414. https://doi.org/10.1007/s40572-017-0164-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9(3):290–298. https://doi.org/10.1177/1362361305053255

    Article  PubMed  Google Scholar 

  21. Skalny AV et al (2017) Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis 32(1):195–202. https://doi.org/10.1007/s11011-016-9899-6

    Article  CAS  PubMed  Google Scholar 

  22. Guo M et al (2020) Vitamin and mineral status of children with autism spectrum disorder in Hainan Province of China: associations with symptoms. Nutr Neurosci 23(10):803–810. https://doi.org/10.1080/1028415X.2018.1558762

    Article  CAS  PubMed  Google Scholar 

  23. Hagmeyer S, Mangus K, Boeckers TM, Grabrucker AM (2015) Effects of trace metal profiles characteristic for autism on synapses in cultured neurons. Neural Plast 2015:1–16. https://doi.org/10.1155/2015/985083

    Article  Google Scholar 

  24. Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W (2019) Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: a pilot study of Chinese children. Environ Res 171:501–509. https://doi.org/10.1016/j.envres.2019.01.060

    Article  CAS  PubMed  Google Scholar 

  25. Bjørklund G (2013) The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp 73(2):225–236

    Google Scholar 

  26. Baecker T, Mangus K, Pfaender S, Chhabra R, Boeckers TM, Grabrucker AM (2014) Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses. BioMetals 27(4):715–730. https://doi.org/10.1007/s10534-014-9764-1

    Article  CAS  PubMed  Google Scholar 

  27. Chao H-T et al (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468(7321):263–269. https://doi.org/10.1038/nature09582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meguid NA et al (2019) The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg 119(4):577–583. https://doi.org/10.1007/s13760-019-01181-9

    Article  PubMed  Google Scholar 

  29. Solovyev ND (2015) Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 153:1–12. https://doi.org/10.1016/j.jinorgbio.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  30. Raymond LJ, Deth RC, Ralston NVC (2014) Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res Treat 2014:1–15. https://doi.org/10.1155/2014/164938

    Article  Google Scholar 

  31. McCann JC, Ames BN (2007) An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am J Clin Nutr 85(4):931–945. https://doi.org/10.1093/ajcn/85.4.931

    Article  CAS  PubMed  Google Scholar 

  32. Pivina L, Semenova Y, Doşa MD, Dauletyarova M, Bjørklund G (2019) Iron deficiency, cognitive functions, and neurobehavioral disorders in children. J Mol Neurosci 68(1):1–10. https://doi.org/10.1007/s12031-019-01276-1

    Article  CAS  PubMed  Google Scholar 

  33. Vollet K, Haynes EN, Dietrich KN (2016) Manganese exposure and cognition across the lifespan: contemporary review and argument for biphasic dose–response health effects. Curr Environ Health Rep 3(4):392–404. https://doi.org/10.1007/s40572-016-0108-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Souad C, Farida Z, Nadra L, François B, Bougle D, Azeddine S (2006) Trace element level in infant hair and diet, and in the local environment of the Moroccan city of Marrakech. Sci Total Environ 370(2–3):337–342. https://doi.org/10.1016/j.scitotenv.2006.06.020

    Article  CAS  PubMed  Google Scholar 

  35. Skalny AV et al (2020) Hair trace element concentrations in autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). J Trace Elem Med Biol 61:126539. https://doi.org/10.1016/j.jtemb.2020.126539

    Article  CAS  PubMed  Google Scholar 

  36. Goullé J-P, Mahieu L, Bonneau L, Laine G, Bouige D, Lacroix C (2005) Validation d’une technique de dosage multiélémentaire des métaux et métalloïdes dans les cheveux par ICP-MS. Valeurs de référence chez 45 témoins. Ann Toxicol Anal 17(2):97–102. https://doi.org/10.1051/ata:2005026

    Article  Google Scholar 

  37. Yukawa M, Suzuki-Yasumoto M, Tanaka S (1984) The variation of trace element concentration in human hair: the trace element profile in human long hair by sectional analysis using neutron activation analysis. Sci Total Environ 38:41–54. https://doi.org/10.1016/0048-9697(84)90206-7

    Article  CAS  PubMed  Google Scholar 

  38. Al-Farsi YM et al (2013) Levels of heavy metals and essential minerals in hair samples of children with autism in Oman: a case–control study. Biol Trace Elem Res 151(2):181–186. https://doi.org/10.1007/s12011-012-9553-z

    Article  CAS  PubMed  Google Scholar 

  39. Skalny AV et al (2017) Analysis of hair trace elements in children with autism spectrum disorders and communication disorders. Biol Trace Elem Res 177(2):215–223. https://doi.org/10.1007/s12011-016-0878-x

    Article  CAS  PubMed  Google Scholar 

  40. Chehbani F et al (2020) The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: a case-control study. Environ Sci Pollut Res 27(28):35738–35749. https://doi.org/10.1007/s11356-020-09819-5

    Article  CAS  Google Scholar 

  41. Faber S, Zinn GM, Kern II JC, Skip Kingston HM (2009) The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 14(3):171–180. https://doi.org/10.1080/13547500902783747

    Article  CAS  PubMed  Google Scholar 

  42. Lakshmi Priya MD, Geetha A (2011) Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142(2):148–158. https://doi.org/10.1007/s12011-010-8766-2

    Article  CAS  PubMed  Google Scholar 

  43. Wu L, Mao S, Lin X, Yang R, Zhu Z (2019) Evaluation of whole blood trace element levels in Chinese Children with autism spectrum disorder. Biol Trace Elem Res 191(2):269–275. https://doi.org/10.1007/s12011-018-1615-4

    Article  CAS  PubMed  Google Scholar 

  44. Gaier ED, Eipper BA, Mains RE (2012) Copper signaling in the mammalian nervous system: Synaptic effects. J Neurosci Res 91:2. https://doi.org/10.1002/jnr.23143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dk G et al. (2019) Zinc deficiency in autism: a controlled study. Insights Biomed 04(03) https://doi.org/10.36648/2572-5610.4.3.63

  46. Saldanha Tschinkel PF, Bjørklund G, Conón LZZ, Chirumbolo S, Nascimento VA (2018) Plasma concentrations of the trace elements copper, zinc and selenium in Brazilian children with autism spectrum disorder. Biomed Pharmacother 106:605–609. https://doi.org/10.1016/j.biopha.2018.06.174

    Article  CAS  PubMed  Google Scholar 

  47. Tinkov AA et al (2019) Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed Pharmacother 109:174–180. https://doi.org/10.1016/j.biopha.2018.10.051

    Article  CAS  PubMed  Google Scholar 

  48. Saghazadeh A, Ahangari N, Hendi K, Saleh F, Rezaei N (2017) Status of essential elements in autism spectrum disorder: systematic review and meta-analysis. Rev Neurosci 28(7):783. https://doi.org/10.1515/revneuro-2017-0015

    Article  CAS  PubMed  Google Scholar 

  49. Bener A, Khattab AO, Bhugra D, Hoffmann GF (2017) Iron and vitamin D levels among autism spectrum disorders children. Ann. Afr. Med 16(4):186–191. https://doi.org/10.4103/aam.aam_17_17

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tseng P-T et al (2018) Peripheral iron levels in children with autism spectrum disorders vs controls: a systematic review and meta-analysis. Nutr. Res 50:44–52. https://doi.org/10.1016/j.nutres.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  51. Blaurock-Busch E, Amin OR, Dessoki HH, Rabah T (2012) Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica 7(1):38–48

    PubMed  PubMed Central  Google Scholar 

  52. Fiore M et al (2020) Metal and essential element levels in hair and association with autism severity. J Trace Elem Med Biol 57:126409. https://doi.org/10.1016/j.jtemb.2019.126409

    Article  CAS  PubMed  Google Scholar 

  53. Hawari I, Eskandar MB, Alzeer S (2020) The role of lead, manganese, and zinc in autism spectrum disorders (ASDs) and attention-deficient hyperactivity disorder (ADHD): a case-control study on Syrian children affected by the Syrian crisis. Biol Trace Elem Res 197(1):107–114. https://doi.org/10.1007/s12011-020-02146-3

    Article  CAS  PubMed  Google Scholar 

  54. Blaurock-Busch E, Nwokolo Chijioke C (2018) « Heavy metals and trace elements in blood, hair and urine of Nigerian children with autistic spectrum disorder ». Int Res J Public Health https://doi.org/10.28933/irjph-2018-07-2201

  55. Bhang S-Y et al (2013) Relationship between blood manganese levels and children’s attention, cognition, behavior, and academic performance—a nationwide cross-sectional study. Environ Res 126:9–16. https://doi.org/10.1016/j.envres.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  56. Skalnaya MG, Skalny AV (2018) Essential trace elements in human health: a physician’s view. Publishing House of Tomsk State University, Tomsk

    Google Scholar 

  57. Farina M, Avila DS, da Rocha JBT, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int. 62(5):575–594. https://doi.org/10.1016/j.neuint.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  58. Wu S, Wu F, Ding Y, Hou J, Bi J, Zhang Z (2017) Advanced parental age and autism risk in children: a systematic review and meta-analysis. Acta Psychiatr Scand 135(1):29–41. https://doi.org/10.1111/acps.12666

    Article  CAS  PubMed  Google Scholar 

  59. Byars SG, Boomsma JJ (2016) Opposite differential risks for autism and schizophrenia based on maternal age, paternal age, and parental age differences. Evol Med Public Health 2016(1):286–298. https://doi.org/10.1093/emph/eow023

    Article  PubMed  PubMed Central  Google Scholar 

  60. Janecka M et al (2017) Advanced paternal age effects in neurodevelopmental disorders—review of potential underlying mechanisms. Transl Psychiatry 7(1):e1019–e1019. https://doi.org/10.1038/tp.2016.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kojima M et al (2019) Neuroanatomical correlates of advanced paternal and maternal age at birth in autism spectrum disorder. Cereb Cortex 29(6):2524–2532. https://doi.org/10.1093/cercor/bhy122

    Article  PubMed  Google Scholar 

  62. Merikangas AK, Calkins ME, Bilker WB, Moore TM, Gur RC, Gur RE (2017) Parental age and offspring psychopathology in the Philadelphia neurodevelopmental cohort. J. Am Acad Child Adolesc Psychiatry 56(5):391–400. https://doi.org/10.1016/j.jaac.2017.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kong A et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488(7412):471–475. https://doi.org/10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zaida F et al (2007) Lead and aluminium levels in infants’ hair, diet, and the local environment Moroccan city of Marrakech. Sci Total Environ 377(2–3):152–158. https://doi.org/10.1016/j.scitotenv.2006.10.017

    Article  CAS  PubMed  Google Scholar 

  65. Strunecka A, Blaylock RL, Strunecky O (2016) Fluoride, aluminum, and aluminofluoride complexes in pathogenesis of the autism spectrum disorders: a possible role of immunoexcitotoxicity. J Appl Biomed 14(3):171–176. https://doi.org/10.1016/j.jab.2016.04.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible thanks to the collaboration of the Center for the Dosage of Mineral Elements of the University of Pharmaceutical Sciences of Nantes. The authors would like to thank all the work teams of this center especially Mr YANNICK François. The authors also want to acknowledge all the work team of the National Center Mohammed VI for the disabled in Marrakesh and all the participants in this work and their parents.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Ouisselsat Mariam, Maidoumi Sanaa, and Elmaouaki Amal; analysis was performed by Ouisselsat Mariam under the direction of Pineau Alain and Sedki Azeddine. The first draft of the manuscript was written by Ouisselsat Mariam and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariam Ouisselsat.

Ethics declarations

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Mohamed VI University Hospital in Marrakech.

Consent to Participate

Freely given informed consent was obtained from all parents or legal guardians of children included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouisselsat, M., Maidoumi, S., Elmaouaki, A. et al. Hair Trace Elements and Mineral Content in Moroccan Children with Autism Spectrum Disorder: a Case–Control Study. Biol Trace Elem Res 201, 2701–2710 (2023). https://doi.org/10.1007/s12011-022-03365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03365-6

Keywords

Navigation