Skip to main content

Advertisement

Log in

Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic is an abundant element in the earth’s crust. In the environment and within the human body, this toxic element can be found in both organic and inorganic forms. Chronic exposure to arsenic can predispose humans to cardiovascular diseases including hypertension, stroke, atherosclerosis, and blackfoot disease. Oxidative damage induced by reactive oxygen species is a major player in arsenic-induced toxicity, and it can affect genes expression, inflammatory responses, and/or nitric oxide homeostasis. Exposure to arsenic in drinking water can lead to vascular endothelial dysfunction which is reflected by an imbalance between vascular relaxation and contraction. Arsenic has been shown to inactivate endothelial nitric oxide synthase leading to a reduction of the generation and bioavailability of nitric oxide. Ultimately, these effects increase the risk of vascular diseases such as hypertension and atherosclerosis. The present article reviews how arsenic exposure contributes to hypertension and atherosclerosis development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ApoE:

Apolipoprotein E

BAEC:

Bovine aortic endothelial cells

CYP:

Cytochrome P450

DMA(V):

Dimethylarsinic acid

DMA(III):

Dimethylarsinous acids

HDL:

High-density lipoprotein cholesterol

HAEC:

Human aortic endothelial cells

HMEC-1:

Human microvessel-derived endothelial cell line

HUVEC:

Human umbilical vein endothelial cells

HNE:

4-Hydroxy-trans-2-nonenal

IL-6:

Interleukin-6

IL-8:

Interleukin-8

LDL:

Low-density lipoprotein cholesterol

MAPK:

Mitogen-activated protein kinase

MMA(V):

Monomethylarsonic acid

MMA(III):

Monomethylarsonous

MCP-1:

Monocyte chemoattractant protein-1

NOX:

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

OxLDL:

Oxidation of the LDL

PAEC:

Porcine aortic endothelial cells

sICAM-1:

Soluble intercellular adhesion molecule-1

sVCAM-1:

Soluble vascular adhesion molecule-1

TNF-α:

Tumor necrosis factor α

WHO:

World Health Organization

References

  1. Jomova K, Jenisova Z, Feszterova M et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  Google Scholar 

  2. Alamolhodaei NS, Shirani K, Karimi G (2015) Arsenic cardiotoxicity: an overview. Environ Toxicol Pharmacol 40:1005–1014

    Article  CAS  Google Scholar 

  3. Kitchin KT, Wallace K (2008) Evidence against the nuclear in situ binding of arsenicals–oxidative stress theory of arsenic carcinogenesis. Toxicol Appl Pharmacol 232:252–257. https://doi.org/10.1016/j.taap.2008.06.021

    Article  CAS  Google Scholar 

  4. Ellinsworth DC (2015) Arsenic, reactive oxygen, and endothelial dysfunction. J Pharmacol Exp Ther 353:458–464. https://doi.org/10.1124/jpet.115.223289

    Article  CAS  Google Scholar 

  5. Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181:211–217

    Article  Google Scholar 

  6. Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    Article  CAS  Google Scholar 

  7. Cosselman KE, Navas-Acien A, Kaufman JD (2015) Environmental factors in cardiovascular disease. Nat Rev Cardiol 12:627–642

    Article  CAS  Google Scholar 

  8. Li Z, Liu Y, Wang F et al (2021) Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: role of oxidative stress, inflammation, and apoptosis. Chem Biol Interact 337:109392

    Article  CAS  Google Scholar 

  9. States JC, Srivastava S, Chen Y, Barchowsky A (2009) Arsenic and cardiovascular disease. Toxicol Sci 107:312–323. https://doi.org/10.1093/toxsci/kfn236

    Article  CAS  Google Scholar 

  10. Newman JD, Navas-Acien A, Kuo C-C, et al (2016) Peripheral arterial disease and its association with arsenic exposure and metabolism in the strong heart study. Am J Epidemiol 1–12

  11. Mazumder DNG (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128:436–447

    Google Scholar 

  12. Navas-Acien A, Silbergeld EK, Guallar E (2005) Peripheral arterial disease and metals: Navas-Acien et al. Respond. Environ Health Perspect 113:A511–A511

  13. Guha Mazumder DN (2008) Chronic arsenic toxicity & human health. Indian J Med Res 128:436–447

    CAS  Google Scholar 

  14. Argos M, Kalra T, Rathouz PJ et al (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376:252–258

    Article  CAS  Google Scholar 

  15. Seo J, Lee JY, Sung M-S et al (2014) Arsenite acutely decreases nitric oxide production via the ROS-protein phosphatase 1-endothelial nitric oxide synthase-Thr(497) signaling cascade. Biomol Ther (Seoul) 22:510–518. https://doi.org/10.4062/biomolther.2014.106

    Article  CAS  Google Scholar 

  16. Pi J, Kumagai Y, Sun G et al (2000) Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia. Free Radic Biol Med 28:1137–1142. https://doi.org/10.1016/s0891-5849(00)00209-4

    Article  CAS  Google Scholar 

  17. Díaz-Villaseñor A, Burns AL, Hiriart M et al (2007) Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus. Toxicol Appl Pharmacol 225:123–133. https://doi.org/10.1016/j.taap.2007.08.019

    Article  CAS  Google Scholar 

  18. Cohen SM, Arnold LL, Eldan M et al (2006) Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 36:99–133. https://doi.org/10.1080/10408440500534230

    Article  CAS  Google Scholar 

  19. Vahidnia A, van der Straaten RJHM, Romijn F et al (2007) Arsenic metabolites affect expression of the neurofilament and tau genes: an in-vitro study into the mechanism of arsenic neurotoxicity. Toxicol In Vitro 21:1104–1112. https://doi.org/10.1016/j.tiv.2007.04.007

    Article  CAS  Google Scholar 

  20. Chen C-J (2014) Health hazards and mitigation of chronic poisoning from arsenic in drinking water: Taiwan experiences. Rev Environ Health 29:13–19. https://doi.org/10.1515/reveh-2014-0007

    Article  CAS  Google Scholar 

  21. Cifuentes F, Bravo J, Norambuena M et al (2009) Chronic exposure to arsenic in tap water reduces acetylcholine-induced relaxation in the aorta and increases oxidative stress in female rats. Int J Toxicol 28:534–541. https://doi.org/10.1177/1091581809345924

    Article  CAS  Google Scholar 

  22. Yang H-T, Chou H-J, Han B-C, Huang S-Y (2007) Lifelong inorganic arsenic compounds consumption affected blood pressure in rats. Food Chem Toxicol an Int J Publ Br Ind Biol Res Assoc 45:2479–2487. https://doi.org/10.1016/j.fct.2007.05.024

    Article  CAS  Google Scholar 

  23. Islam MR, Khan I, Attia J et al (2012) Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health 9:4522–4536. https://doi.org/10.3390/ijerph9124522

    Article  CAS  Google Scholar 

  24. Wei BG, Ye BX, Yu JP et al (2017) Blood pressure associated with arsenic methylation and arsenic metabolism caused by chronic exposure to arsenic in tube well water. Biomed Environ Sci 30:334–342. https://doi.org/10.3967/bes2017.044

    Article  CAS  Google Scholar 

  25. Rahman A, Vahter M, Ekström E-C et al (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165:1389–1396. https://doi.org/10.1093/aje/kwm025

    Article  Google Scholar 

  26. Li Y, Wang D, Li X et al (2015) A potential synergy between incomplete arsenic methylation capacity and demographic characteristics on the risk of hypertension: findings from a cross-sectional study in an arsenic-endemic area of inner Mongolia, China. Int J Environ Res Public Health 12:3615–3632. https://doi.org/10.3390/ijerph120403615

    Article  CAS  Google Scholar 

  27. Togliatto G, Lombardo G, Brizzi MF (2017) The future challenge of reactive oxygen species (ROS) in hypertension: from bench to bed side. Int J Mol Sci 18:. https://doi.org/10.3390/ijms18091988

  28. Soltani F, Mosaffa F, Iranshahi M et al (2010) Auraptene from Ferula szowitsiana protects human peripheral lymphocytes against oxidative stress. Phyther Res An Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv 24:85–89

    CAS  Google Scholar 

  29. Barchowsky A, Klei LR, Dudek EJ et al (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27:1405–1412. https://doi.org/10.1016/s0891-5849(99)00186-0

    Article  CAS  Google Scholar 

  30. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  Google Scholar 

  31. Lee MY, Griendling KK (2008) Redox signaling, vascular function, and hypertension. Antioxid Redox Signal 10:1045–1059. https://doi.org/10.1089/ars.2007.1986

    Article  CAS  Google Scholar 

  32. Lassègue B, San Martín A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390. https://doi.org/10.1161/CIRCRESAHA.111.243972

    Article  CAS  Google Scholar 

  33. Smith KR, Klei LR, Barchowsky A (2001) Arsenite stimulates plasma membrane NADPH oxidase in vascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 280:L442–L449. https://doi.org/10.1152/ajplung.2001.280.3.L442

    Article  CAS  Google Scholar 

  34. Lynn S, Gurr JR, Lai HT, Jan KY (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514–519. https://doi.org/10.1161/01.res.86.5.514

    Article  CAS  Google Scholar 

  35. Waghe P, Sarath TS, Gupta P et al (2015) Arsenic causes aortic dysfunction and systemic hypertension in rats: augmentation of angiotensin II signaling. Chem Biol Interact 237:104–114. https://doi.org/10.1016/j.cbi.2015.06.014

    Article  CAS  Google Scholar 

  36. Straub AC, Clark KA, Ross MA et al (2008) Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase-generated superoxide. J Clin Invest 118:3980–3989. https://doi.org/10.1172/JCI35092

    Article  CAS  Google Scholar 

  37. Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98:730–742. https://doi.org/10.1161/01.RES.0000216039.75913.9e

    Article  CAS  Google Scholar 

  38. Behrendt D, Ganz P (2002) Endothelial function. From vascular biology to clinical applications. Am J Cardiol 90:40L-48L. https://doi.org/10.1016/s0002-9149(02)02963-6

    Article  CAS  Google Scholar 

  39. Angeli JK, Cruz Pereira CA, de Oliveira FT et al (2013) Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic Biol Med 65:838–848. https://doi.org/10.1016/j.freeradbiomed.2013.08.167

    Article  CAS  Google Scholar 

  40. Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

    Article  CAS  Google Scholar 

  41. Sarath TS, Waghe P, Gupta P et al (2014) Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicol Appl Pharmacol 280:443–454. https://doi.org/10.1016/j.taap.2014.08.032

    Article  CAS  Google Scholar 

  42. Tsou T-C, Tsai F-Y, Hsieh Y-W et al (2005) Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol Appl Pharmacol 208:277–284. https://doi.org/10.1016/j.taap.2005.03.001

    Article  CAS  Google Scholar 

  43. Pi J, Horiguchi S, Sun Y et al (2003) A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radic Biol Med 35:102–113. https://doi.org/10.1016/s0891-5849(03)00269-7

    Article  CAS  Google Scholar 

  44. Prabu SM, Muthumani M (2012) Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep 39:11201–11216. https://doi.org/10.1007/s11033-012-2029-6

    Article  CAS  Google Scholar 

  45. Wayman NS, Ellis BL, Thiemermann C (2003) Simvastatin reduces infarct size in a model of acute myocardial ischemia and reperfusion in the rat. Med Sci Monit Int Med J Exp Clin Res 9:BR155–9

  46. Fouad AA, Albuali WH, Jresat I (2014) Protective effect of thymoquinone against arsenic-induced testicular toxicity in rats. In: Kuala Lumpur, Malaysia: International Conference on Pharmacology and Pharmaceutical Medicine (ICPPM). Citeseer

  47. Sharifi AM, Akbarloo N, Darabi R, Larijani B (2004) Study of correlation between elevation of blood pressure and tissue ACE activity during development of hypertension in 1K1C rats. Vascul Pharmacol 41:15–20. https://doi.org/10.1016/j.vph.2004.03.002

    Article  CAS  Google Scholar 

  48. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13:9–20. https://doi.org/10.18553/jmcp.2007.13.s8-b.9

  49. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19:1110–1120. https://doi.org/10.1089/ars.2012.4641

    Article  CAS  Google Scholar 

  50. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  Google Scholar 

  51. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82-97. https://doi.org/10.1152/ajpcell.00287.2006

    Article  CAS  Google Scholar 

  52. Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20:953–970. https://doi.org/10.1210/me.2004-0536

    Article  CAS  Google Scholar 

  53. Broseghini-Filho GB, Almenara CCP, Vescovi MVA et al (2015) Acute cadmium exposure reduces the local angiotensin I converting enzyme activity and increases the tissue metal content. Biol Trace Elem Res 166:149–156. https://doi.org/10.1007/s12011-015-0250-6

    Article  CAS  Google Scholar 

  54. Lau YS, Kwan CY, Ku TC et al (2012) Apocynum venetum leaf extract, an antihypertensive herb, inhibits rat aortic contraction induced by angiotensin II: a nitric oxide and superoxide connection. J Ethnopharmacol 143:565–571. https://doi.org/10.1016/j.jep.2012.07.012

    Article  CAS  Google Scholar 

  55. Zhang J, Van Meel JC, Pfaffendorf M et al (1994) Endothelium-dependent, nitric oxide-mediated inhibition of angiotensin II-induced contractions in rabbit aorta. Eur J Pharmacol 262:247–253. https://doi.org/10.1016/0014-2999(94)90738-2

    Article  CAS  Google Scholar 

  56. Di WH, Johns DG, Xu S, Cohen RA (2002) Role of superoxide anion in regulating pressor and vascular hypertrophic response to angiotensin II. Am J Physiol Heart Circ Physiol 282:H1697–H1702. https://doi.org/10.1152/ajpheart.00914.2001

    Article  Google Scholar 

  57. Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27. https://doi.org/10.1016/j.cardiores.2004.08.007

    Article  CAS  Google Scholar 

  58. Lim K-M, Shin Y-S, Kang S et al (2011) Potentiation of vasoconstriction and pressor response by low concentration of monomethylarsonous acid (MMA(III)). Toxicol Lett 205:250–256. https://doi.org/10.1016/j.toxlet.2011.06.008

    Article  CAS  Google Scholar 

  59. Honeck H, Gross V, Erdmann B, et al (2000) Cytochrome P450-dependent renal arachidonic acid metabolism in desoxycorticosterone acetate-salt hypertensive mice. Hypertens (Dallas, Tex 1979) 36:610–616. https://doi.org/10.1161/01.hyp.36.4.610

  60. Miyata N, Roman RJ (2005) Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. J Smooth Muscle Res 41:175–193. https://doi.org/10.1540/jsmr.41.175

    Article  Google Scholar 

  61. Parmentier JH, Muthalif MM, Nishimoto AT, Malik KU (2001) 20-Hydroxyeicosatetraenoic acid mediates angiotensin ii-induced phospholipase d activation in vascular smooth muscle cells. Hypertens (Dallas, Tex 1979) 37:623–629. https://doi.org/10.1161/01.hyp.37.2.623

  62. Landmesser U, Dikalov S, Price SR et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209. https://doi.org/10.1172/JCI14172

    Article  CAS  Google Scholar 

  63. McGiff JC, Quilley J (1999) 20-HETE and the kidney: resolution of old problems and new beginnings. Am J Physiol 277:R607–R623. https://doi.org/10.1152/ajpregu.1999.277.3.R607

    Article  CAS  Google Scholar 

  64. Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertens (Dallas, Tex 1979) 44:381–386. https://doi.org/10.1161/01.HYP.0000142232.29764.a7

  65. Halperin RO, Sesso HD, Ma J, et al (2006) Dyslipidemia and the risk of incident hypertension in men. Hypertens (Dallas, Tex 1979) 47:45–50. https://doi.org/10.1161/01.HYP.0000196306.42418.0e

  66. Muthumani M (2013) Silibinin attenuates arsenic induced alterations in serum and hepatic lipid profiles in rats. J Appl Pharm Sci 3:132

    Google Scholar 

  67. Cheng T-J, Chuu J-J, Chang C-Y et al (2011) Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism. Toxicol Appl Pharmacol 256:146–153. https://doi.org/10.1016/j.taap.2011.08.001

    Article  CAS  Google Scholar 

  68. Sidhu MS, Desai KP, Lynch HN et al (2015) Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 331:78–99. https://doi.org/10.1016/j.tox.2015.02.008

    Article  CAS  Google Scholar 

  69. Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Heal Part A, Toxic/hazardous Subst Environ Eng 41:2399–2428. https://doi.org/10.1080/10934520600873571

    Article  CAS  Google Scholar 

  70. Bunderson M, Coffin JD, Beall HD (2002) Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: possible role in atherosclerosis. Toxicol Appl Pharmacol 184:11–18

    Article  CAS  Google Scholar 

  71. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. https://doi.org/10.1038/nature10146

    Article  CAS  Google Scholar 

  72. Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J Off Publ Fed Am Soc Exp Biol 15:2073–2084. https://doi.org/10.1096/fj.01-0273rev

    Article  CAS  Google Scholar 

  73. George J, Afek A, Gilburd B et al (1998) Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138:147–152. https://doi.org/10.1016/s0021-9150(98)00015-x

    Article  CAS  Google Scholar 

  74. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128. https://doi.org/10.1016/0891-5849(91)90192-6

    Article  CAS  Google Scholar 

  75. Lau ATY, He Q-Y, Chiu J-F (2004) A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 382:641–650. https://doi.org/10.1042/BJ20040224

    Article  CAS  Google Scholar 

  76. Srivastava S, Chandra A, Ansari NH, et al (1998) Identification of cardiac oxidoreductase(s) involved in the metabolism of the lipid peroxidation-derived aldehyde-4-hydroxynonenal. Biochem J 329 ( Pt 3:469–475. https://doi.org/10.1042/bj3290469

  77. Srivastava S, Conklin DJ, Liu SQ et al (2001) Identification of biochemical pathways for the metabolism of oxidized low-density lipoprotein derived aldehyde-4-hydroxy trans-2-nonenal in vascular smooth muscle cells. Atherosclerosis 158:339–350. https://doi.org/10.1016/s0021-9150(01)00454-3

    Article  CAS  Google Scholar 

  78. Seino Y, Ikeda U, Ikeda M et al (1994) Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 6:87–91. https://doi.org/10.1016/1043-4666(94)90013-2

    Article  CAS  Google Scholar 

  79. Wang LJ, Lee TS, Lee FY et al (1998) Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol 152:711–720

    CAS  Google Scholar 

  80. Taketani S, Kohno H, Yoshinaga T, Tokunaga R (1989) The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett 245:173–176. https://doi.org/10.1016/0014-5793(89)80215-7

    Article  CAS  Google Scholar 

  81. Simeonova PP, Hulderman T, Harki D, Luster MI (2003) Arsenic exposure accelerates atherogenesis in apolipoprotein E(-/-) mice. Environ Health Perspect 111:1744–1748. https://doi.org/10.1289/ehp.6332

    Article  CAS  Google Scholar 

  82. Balakumar P, Kaur J (2009) Arsenic exposure and cardiovascular disorders: an overview. Cardiovasc Toxicol 9:169–176. https://doi.org/10.1007/s12012-009-9050-6

    Article  CAS  Google Scholar 

  83. Lilly LS (2012) Pathophysiology of heart disease: a collaborative project of medical students and faculty. Lippincott Williams & Wilkins

    Google Scholar 

  84. Lemaire M, Negro Silva LF, Lemarié CA et al (2015) Arsenic exposure increases monocyte adhesion to the vascular endothelium, a pro-atherogenic mechanism. PLoS ONE 10:e0136592. https://doi.org/10.1371/journal.pone.0136592

    Article  CAS  Google Scholar 

  85. Bunderson M, Brooks DM, Walker DL et al (2004) Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol 201:32–39. https://doi.org/10.1016/j.taap.2004.04.008

    Article  CAS  Google Scholar 

  86. Gu L, Okada Y, Clinton SK et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281. https://doi.org/10.1016/s1097-2765(00)80139-2

    Article  CAS  Google Scholar 

  87. Wu M-M, Chiou H-Y, Ho I-C et al (2003) Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect 111:1429–1438. https://doi.org/10.1289/ehp.6396

    Article  CAS  Google Scholar 

  88. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809. https://doi.org/10.1038/362801a0

    Article  CAS  Google Scholar 

  89. Nelken NA, Coughlin SR, Gordon D, Wilcox JN (1991) Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88:1121–1127. https://doi.org/10.1172/JCI115411

    Article  CAS  Google Scholar 

  90. Ikeda U, Ikeda M, Oohara T et al (1991) Interleukin 6 stimulates growth of vascular smooth muscle cells in a PDGF-dependent manner. Am J Physiol 260:H1713–H1717. https://doi.org/10.1152/ajpheart.1991.260.5.H1713

    Article  CAS  Google Scholar 

  91. Maruo N, Morita I, Shirao M, Murota S (1992) IL-6 increases endothelial permeability in vitro. Endocrinology 131:710–714. https://doi.org/10.1210/endo.131.2.1639018

    Article  CAS  Google Scholar 

  92. Simeonova PP, Luster MI (2004) Arsenic and atherosclerosis. Toxicol Appl Pharmacol 198:444–449. https://doi.org/10.1016/j.taap.2003.10.018

    Article  CAS  Google Scholar 

  93. Koch AE, Polverini PJ, Kunkel SL et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801. https://doi.org/10.1126/science.1281554

    Article  CAS  Google Scholar 

  94. Nicolaou KC, Smith AL, Yue EW (1993) Chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci U S A 90:5881–5888. https://doi.org/10.1073/pnas.90.13.5881

    Article  CAS  Google Scholar 

  95. Lloyd S (1996) Universal Quantum Simulators. Science 273:1073–1078. https://doi.org/10.1126/science.273.5278.1073

    Article  CAS  Google Scholar 

  96. Gerszten RE, Garcia-Zepeda EA, Lim YC et al (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723. https://doi.org/10.1038/19546

    Article  CAS  Google Scholar 

  97. Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE (1996) Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med 21:783–790. https://doi.org/10.1016/0891-5849(96)00174-8

    Article  CAS  Google Scholar 

  98. Yarmohammadi F, Karbasforooshan H, Hayes AW, Karimi G (2021) Inflammation suppression in doxorubicin-induced cardiotoxicity: natural compounds as therapeutic options. Naunyn Schmiedebergs Arch Pharmacol 394:2003–2011

    Article  CAS  Google Scholar 

  99. Simeonova PP, Leonard S, Flood L et al (1999) Redox-dependent regulation of interleukin-8 by tumor necrosis factor-alpha in lung epithelial cells. Lab Invest 79:1027–1037

    CAS  Google Scholar 

  100. Adams DH, Shaw S (1994) Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet (London, England) 343:831–836. https://doi.org/10.1016/s0140-6736(94)92029-x

    Article  CAS  Google Scholar 

  101. Chen Y, Santella RM, Kibriya MG et al (2007) Association between arsenic exposure from drinking water and plasma levels of soluble cell adhesion molecules. Environ Health Perspect 115:1415–1420. https://doi.org/10.1289/ehp.10277

    Article  CAS  Google Scholar 

  102. de Lemos JA, Hennekens CH, Ridker PM (2000) Plasma concentration of soluble vascular cell adhesion molecule-1 and subsequent cardiovascular risk. J Am Coll Cardiol 36:423–426

    Article  Google Scholar 

  103. Pradhan AD, Rifai N, Ridker PM (2002) Soluble intercellular adhesion molecule-1, soluble vascular adhesion molecule-1, and the development of symptomatic peripheral arterial disease in men. Circulation 106:820–825

    Article  CAS  Google Scholar 

  104. Blankenberg S, Rupprecht HJ, Bickel C et al (2001) Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 104:1336–1342. https://doi.org/10.1161/hc3701.095949

    Article  CAS  Google Scholar 

  105. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843. https://doi.org/10.1056/NEJM200003233421202

    Article  CAS  Google Scholar 

  106. Ridker PM, Hennekens CH, Roitman-Johnson B et al (1998) Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet (London, England) 351:88–92. https://doi.org/10.1016/S0140-6736(97)09032-6

    Article  CAS  Google Scholar 

  107. Hwang SJ, Ballantyne CM, Sharrett AR et al (1997) Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 96:4219–4225. https://doi.org/10.1161/01.cir.96.12.4219

    Article  CAS  Google Scholar 

  108. Hou Y-C, Hsu C-S, Yeh C-L et al (2005) Effects of glutamine on adhesion molecule expression and leukocyte transmigration in endothelial cells exposed to arsenic. J Nutr Biochem 16:700–704. https://doi.org/10.1016/j.jnutbio.2005.04.007

    Article  CAS  Google Scholar 

  109. Griffin RJ, Lee SH, Rood KL et al (2000) Use of arsenic trioxide as an antivascular and thermosensitizing agent in solid tumors. Neoplasia 2:555–560. https://doi.org/10.1038/sj.neo.7900123

    Article  CAS  Google Scholar 

  110. Cybulsky MI, Gimbrone MAJ (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791. https://doi.org/10.1126/science.1990440

    Article  CAS  Google Scholar 

  111. Yarmohammadi F, Rezaee R, Haye AW, Karimi G (2021) Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review. Pharmacol Res 164:105383

    Article  CAS  Google Scholar 

  112. Du Y, Wang K, Fang H et al (2006) Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. Blood 107:1582–1590

    Article  CAS  Google Scholar 

  113. Walsh K, Sata M (1999) Negative regulation of inflammation by Fas ligand expression on the vascular endothelium. Trends Cardiovasc Med 9:34–41. https://doi.org/10.1016/s1050-1738(99)00006-7

    Article  CAS  Google Scholar 

  114. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456. https://doi.org/10.1126/science.7533326

    Article  CAS  Google Scholar 

  115. Sata M, Perlman H, Muruve DA et al (1998) Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci U S A 95:1213–1217. https://doi.org/10.1073/pnas.95.3.1213

    Article  CAS  Google Scholar 

  116. Sata M, Walsh K (1998) TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med 4:415–420. https://doi.org/10.1038/nm0498-415

    Article  CAS  Google Scholar 

  117. Tsai SH, Hsieh MS, Chen L et al (2001) Suppression of Fas ligand expression on endothelial cells by arsenite through reactive oxygen species. Toxicol Lett 123:11–19. https://doi.org/10.1016/s0378-4274(01)00373-3

    Article  CAS  Google Scholar 

  118. Puddu P, Puddu GM, Zaca F, Muscari A (2000) Endothelial dysfunction in hypertension. Acta Cardiol 55:221–232. https://doi.org/10.2143/AC.55.4.2005744

    Article  CAS  Google Scholar 

  119. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695. https://doi.org/10.1056/NEJMra043430

    Article  CAS  Google Scholar 

  120. Jiang S-J, Lin T-M, Wu H-L et al (2002) Decrease of fibrinolytic activity in human endothelial cells by arsenite. Thromb Res 105:55–62. https://doi.org/10.1016/s0049-3848(01)00397-8

    Article  CAS  Google Scholar 

  121. Straub AC, Stolz DB, Vin H et al (2007) Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice. Toxicol Appl Pharmacol 222:327–336. https://doi.org/10.1016/j.taap.2006.10.011

    Article  CAS  Google Scholar 

  122. Rekka EA, Chrysselis MC (2002) Nitric oxide in atherosclerosis. Mini Rev Med Chem 2:585–593. https://doi.org/10.2174/1389557023405666

    Article  CAS  Google Scholar 

  123. Panigrahi A, Chattopadhyay AK, Paul G, Panigrahi S (2016) HIV, cardiovascular diseases, and chronic arsenic exposure co-exist in a positive synergy. arXiv Prepr arXiv160205981

  124. Parmar KM, Larman HB, Dai G et al (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116:49–58. https://doi.org/10.1172/JCI24787

    Article  CAS  Google Scholar 

  125. SenBanerjee S, Lin Z, Atkins GB et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315. https://doi.org/10.1084/jem.20031132

    Article  CAS  Google Scholar 

  126. Suriyo T, Watcharasit P, Thiantanawat A, Satayavivad J (2012) Arsenite promotes apoptosis and dysfunction in microvascular endothelial cells via an alteration of intracellular calcium homeostasis. Toxicol In Vitro 26:386–395. https://doi.org/10.1016/j.tiv.2011.12.017

    Article  CAS  Google Scholar 

  127. Erdogdu O, Nathanson D, Sjöholm A et al (2010) Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol 325:26–35. https://doi.org/10.1016/j.mce.2010.04.022

    Article  CAS  Google Scholar 

  128. Sandoval R, Malik AB, Minshall RD et al (2001) Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol 533:433–445. https://doi.org/10.1111/j.1469-7793.2001.0433a.x

    Article  CAS  Google Scholar 

  129. Motley ED, Eguchi K, Patterson MM, et al (2007) Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin. Hypertens (Dallas, Tex 1979) 49:577–583. https://doi.org/10.1161/01.HYP.0000255954.80025.34

  130. Yamauchi H, Yamamura Y (1983) Concentration and chemical species of arsenic in human tissue. Bull Environ Contam Toxicol 31:267–270. https://doi.org/10.1007/BF01608697

    Article  CAS  Google Scholar 

  131. Cohen SM, Arnold LL, Beck BD et al (2013) Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol 43:711–752. https://doi.org/10.3109/10408444.2013.827152

    Article  CAS  Google Scholar 

  132. Libby P (2006) Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol 98:3Q-9Q. https://doi.org/10.1016/j.amjcard.2006.09.020

    Article  CAS  Google Scholar 

  133. Chen S-C, Huang S-Y, Lin W-T et al (2016) Aortic smooth muscle cell alterations in mice systemically exposed to arsenic. Heart Vessels 31:807–815. https://doi.org/10.1007/s00380-015-0708-7

    Article  Google Scholar 

  134. Je HD, Sohn UD (2007) SM22alpha is required for agonist-induced regulation of contractility: evidence from SM22alpha knockout mice. Mol Cells 23:175–181

    CAS  Google Scholar 

  135. Gomez D, Owens GK (2012) Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res 95:156–164. https://doi.org/10.1093/cvr/cvs115

    Article  CAS  Google Scholar 

  136. Shen J, Yang M, Ju D et al (2010) Disruption of SM22 promotes inflammation after artery injury via nuclear factor kappaB activation. Circ Res 106:1351–1362. https://doi.org/10.1161/CIRCRESAHA.109.213900

    Article  CAS  Google Scholar 

  137. Wamhoff BR, Hoofnagle MH, Burns A et al (2004) A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res 95:981–988. https://doi.org/10.1161/01.RES.0000147961.09840.fb

    Article  CAS  Google Scholar 

  138. Lenk GM, Tromp G, Weinsheimer S et al (2007) Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics 8:237. https://doi.org/10.1186/1471-2164-8-237

    Article  CAS  Google Scholar 

  139. Feil S, Hofmann F, Feil R (2004) SM22alpha modulates vascular smooth muscle cell phenotype during atherogenesis. Circ Res 94:863–865. https://doi.org/10.1161/01.RES.0000126417.38728.F6

    Article  CAS  Google Scholar 

  140. Noma K, Oyama N, Liao JK (2006) Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 290:C661–C668. https://doi.org/10.1152/ajpcell.00459.2005

    Article  CAS  Google Scholar 

  141. Blaschke F, Bruemmer D, Law RE (2004) Egr-1 is a major vascular pathogenic transcription factor in atherosclerosis and restenosis. Rev Endocr Metab Disord 5:249–254. https://doi.org/10.1023/B:REMD.0000032413.88756.ee

    Article  CAS  Google Scholar 

  142. Khachigian LM (2006) Early growth response-1 in cardiovascular pathobiology. Circ Res 98:186–191. https://doi.org/10.1161/01.RES.0000200177.53882.c3

    Article  CAS  Google Scholar 

  143. Dandré F, Owens GK (2004) Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am J Physiol Heart Circ Physiol 286:H2042–H2051. https://doi.org/10.1152/ajpheart.00625.2003

    Article  Google Scholar 

  144. Chen Y, Graziano JH, Parvez F, et al (2011) Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. Bmj 342

  145. Yuan Y, Marshall G, Ferreccio C et al (2007) Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. Am J Epidemiol 166:1381–1391

    Article  Google Scholar 

  146. Moon KA, Oberoi S, Barchowsky A et al (2017) A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int J Epidemiol 46:1924–1939

    Article  Google Scholar 

  147. Navas-Acien A, Sanchez TR, Mann K, Jones MR (2019) Arsenic exposure and cardiovascular disease: evidence needed to inform the dose-response at low levels. Curr Epidemiol Reports 6:81–92

    Article  Google Scholar 

  148. Koestler DC, Avissar-Whiting M, Houseman EA et al (2013) Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect 121:971–977

    Article  Google Scholar 

  149. Reichard JF, Schnekenburger M, Puga A (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352:188–192

    Article  CAS  Google Scholar 

  150. Bailey KA, Fry RC (2014) Arsenic-associated changes to the epigenome: what are the functional consequences? Curr Environ Heal reports 1:22–34

    Article  Google Scholar 

  151. Lee M-Y, Jung B-I, Chung S-M et al (2003) Arsenic-induced dysfunction in relaxation of blood vessels. Environ Health Perspect 111:513–517. https://doi.org/10.1289/ehp.5916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mashhad University of Medical Sciences for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Gholamreza Karimi designed this study. The first draft of the manuscript was written by Soudabeh Balarastaghi. Gholamreza Karimi, Ramin Rezaee, A. Wallace Hayes, and Fatemeh Yarmohammadi edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gholamreza Karimi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balarastaghi, S., Rezaee, R., Hayes, A.W. et al. Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview. Biol Trace Elem Res 201, 98–113 (2023). https://doi.org/10.1007/s12011-022-03153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03153-2

Keywords

Navigation