Skip to main content

Advertisement

Log in

Associations Between Plasma Metals and Cognitive Function in People Aged 60 and Above

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the study was to explore the relationship between the plasma levels of 22 metals and cognition status in older adults aged 60 years and above. A cross-sectional survey was conducted between 2018 and 2019. Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the concentrations of metals, and a mini-mental state examination (MMSE) questionnaire was used to estimate the cognition status of the elderly. Based on the years of education and MMSE scores, the participants were separated into the normal and impaired cognition groups. Lasso regression, logistic regression, and restricted cubic spline models were used to explore the relationship between the metals and cognitive status. A total of 1667 subjects were included in the study, and 333 (19.97%) of the participants had impaired cognition. Then, 12 metals, including Al, Fe, Ni, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, and Sb were selected by lasso regression. Before the multivariate adjustment, Al and Cu were associated with the risk of increasing cognitive impairment (OR = 1.756, 95% CI: 1.166–2.646, P = 0.007; OR = 1.519, 95% CI: 1.050–2.197, P = 0.026, respectively). By contrast, Rb was associated with a decrease in the risk of cognitive impairment (OR = 0.626, 95% CI: 0.427–0.918, P = 0.017), but Cd was significantly associated with an increase in this risk (OR = 1.456, 95% CI: 1.003–2.114, P = 0.048). After multivariate adjustment, only Al (OR = 1.533, 95% CI: 1.000–2.350, P = 0.050) maintained a borderline difference with the risk of cognitive impairment. A significant positive correlation was found between the risk of cognitive impairment and Al, Cu, and Cd, contrary to the negative correlation found with Rb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code Availability

Not available.

References

  1. Tucker-Drob EM (2019) Cognitive aging and dementia: a life span perspective. Annu Rev Dev Psychol 1:177–196. https://doi.org/10.1146/annurev-devpsych-121318-085204

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li S, Sun W, Zhang D (2019) Association of zinc, iron, copper, and selenium intakes with low cognitive performance in older adults: a cross-sectional study from National Health and Nutrition Examination Survey (NHANES). J Alzheimers Dis 72(4):1145–1157. https://doi.org/10.3233/jad-190263

    Article  PubMed  Google Scholar 

  3. Lu Z, Harris TB, Shiroma EJ, Leung J, Kwok T (2018) Patterns of physical activity and sedentary behavior for older adults with Alzheimer’s disease, mild cognitive impairment, and cognitively normal in Hong Kong. J Alzheimers Dis 66(4):1453–1462. https://doi.org/10.3233/jad-180805

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen ML, Hong CG, Yue T, Li HM, Duan R, Hu WB, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Tang SY, Xie H, Liu ZZ (2021) Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 11(5):2395–2409. https://doi.org/10.7150/thno.47408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clare L, Wu YT, Teale JC, MacLeod C, Matthews F, Brayne C, Woods B (2017) Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: a cross-sectional study. PLoS Med 14(3):e1002259. https://doi.org/10.1371/journal.pmed.1002259

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cabral Pinto MMS, Marinho-Reis P, Almeida A, Pinto E, Neves O, Inácio M, Gerardo B, Freitas S, Simões MR, Dinis PA, Diniz L, Ferreira da Silva E, Moreira PI (2019) Links between cognitive status and trace element levels in hair for an environmentally exposed population: a case study in the surroundings of the Estarreja industrial area. Int. J. Environ. Res. Public Health 16(22). https://doi.org/10.3390/ijerph16224560

  7. Eshkoor SA, Hamid TA, Mun CY, Ng CK (2015) Mild cognitive impairment and its management in older people. Clin Interv Aging 10:687–693. https://doi.org/10.2147/cia.S73922

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lam PK, Kritz-Silverstein D, Barrett Connor E, Milne D, Nielsen F, Gamst A, Morton D, Wingard D (2008) Plasma trace elements and cognitive function in older men and women: the Rancho Bernardo study. J Nutr Health Aging 12(1):22–27. https://doi.org/10.1007/bf02982160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu C, Yi Q, Zheng X, Cui S, Chen B, Lu L, Tang C (2019) Effects of mind-body exercises on cognitive function in older adults: a meta-analysis. J Am Geriatr Soc 67(4):749–758. https://doi.org/10.1111/jgs.15714

    Article  PubMed  Google Scholar 

  10. Sharifian N, Kraal AZ, Zaheed AB, Sol K, Zahodne LB (2020) Longitudinal associations between contact frequency with friends and with family, activity engagement, and cognitive functioning. J Int Neuropsychol Soc 26(8):815–824. https://doi.org/10.1017/s1355617720000259

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gao S, Jin Y, Unverzagt FW, Ma F, Hall KS, Murrell JR, Cheng Y, Shen J, Ying B, Ji R, Matesan J, Liang C, Hendrie HC (2008) Trace element levels and cognitive function in rural elderly Chinese. J Gerontol A Biol Sci Med Sci. 63(6):635–41. https://doi.org/10.1093/gerona/63.6.635

    Article  PubMed  Google Scholar 

  12. Ma J, Yan L, Guo T, Yang S, Liu Y, Xie Q, Ni D, Wang J (2020) Association between serum essential metal elements and the risk of schizophrenia in China. Sci Rep 10(1):10875. https://doi.org/10.1038/s41598-020-66496-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meramat A, Rajab NF, Shahar S, Sharif RA (2017) DNA damage, copper and lead associates with cognitive function among older adults. J Nutr Health Aging 21(5):539–545. https://doi.org/10.1007/s12603-016-0759-1

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Wang Z, Fu Z, Yan M, Wu N, Wu H, Yin P (2018) Associations between blood cadmium levels and cognitive function in a cross-sectional study of US adults aged 60 years or older. BMJ Open 8(4):e020533. https://doi.org/10.1136/bmjopen-2017-020533

    Article  PubMed  PubMed Central  Google Scholar 

  15. Markiewicz-Żukowska R, Gutowska A, Borawska MH (2015) Serum zinc concentrations correlate with mental and physical status of nursing home residents. PLoS ONE 10(1):e0117257. https://doi.org/10.1371/journal.pone.0117257

    Article  PubMed  PubMed Central  Google Scholar 

  16. Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB (2020) Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 295(19):6312–6329. https://doi.org/10.1074/jbc.REV119.009453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L (2018) Entry and deposit of aluminum in the brain. Adv Exp Med Biol 1091:39–51. https://doi.org/10.1007/978-981-13-1370-7_3

    Article  CAS  PubMed  Google Scholar 

  18. Lu X (2018) Occupational exposure to aluminum and cognitive impairment. Adv Exp Med Biol 1091:85–97. https://doi.org/10.1007/978-981-13-1370-7_5

    Article  CAS  PubMed  Google Scholar 

  19. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Del Carmen CM, Cebrián ME, Stoltzfus RJ (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115(9):1371–1375. https://doi.org/10.1289/ehp.9961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsen B, Bourque J, Moore TM, Adebimpe A, Calkins ME, Elliott MA, Gur RC, Gur RE, Moberg PJ, Roalf DR, Ruparel K, Turetsky BI, Vandekar SN, Wolf DH, Shinohara RT, Satterthwaite TD (2020) Longitudinal development of brain iron is linked to cognition in youth. J Neurosci 40(9):1810–1818. https://doi.org/10.1523/jneurosci.2434-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barth A, Schaffer AW, Konnaris C, Blauensteiner R, Winker R, Osterode W, Rüdiger HW (2002) Neurobehavioral effects of vanadium. J Toxicol Environ Health A 65(9):677–683. https://doi.org/10.1080/15287390252900377

    Article  CAS  PubMed  Google Scholar 

  22. Gong Z, Song W, Gu M (2021) Serum copper and zinc concentrations and cognitive impairment in older adults aged 60 years and older. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02765-4

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feng X, Li L, Huang L, Zhang H, Mo Z, Yang X (2020) Associations between serum multiple metals exposures and metabolic syndrome: a longitudinal cohort study. Biol Trace Elem Res https://doi.org/10.1007/s12011-020-02371-w

  24. Gu L, Yu J, Fan Y, Wang S, Yang L, Liu K, Wang Q, Chen G, Zhang D, Ma Y, Wang L, Liu A, Cao H, Li X, Li K, Tao F, Sheng J (2021) The association between trace elements exposure and the cognition in the elderly in China. Biol Trace Elem Res 199(2):403–412. https://doi.org/10.1007/s12011-020-02154-3

    Article  CAS  PubMed  Google Scholar 

  25. Peng Y, Li Z, Yang X, Yang L, He M, Zhang H, Wei X, Qin J, Li X, Lu G, Zhang L, Yang Y, Zhang Z, Zou Y (2020) Relation between cadmium body burden and cognitive function in older men: a cross-sectional study in China. Chemosphere 250:126535. https://doi.org/10.1016/j.chemosphere.2020.126535

    Article  CAS  PubMed  Google Scholar 

  26. Ehsani H, Mohler MJ, O’Connor K, Zamrini E, Tirambulo C, Toosizadeh N (2019) The association between cognition and dual-tasking among older adults: the effect of motor function type and cognition task difficulty. Clin Interv Aging 14:659–669. https://doi.org/10.2147/cia.S198697

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shang N, Zhang P, Wang S, Chen J, Fan R, Chen J, Huang T, Wang Y, Duncan J, Zhang L, Niu Q, Zhang Q (2020) Aluminum-induced cognitive impairment and PI3K/Akt/mTOR signaling pathway involvement in occupational aluminum workers. Neurotox Res 38(2):344–358. https://doi.org/10.1007/s12640-020-00230-z

    Article  CAS  PubMed  Google Scholar 

  28. Nie J (2018) Exposure to aluminum in daily life and Alzheimer’s disease. Adv Exp Med Biol 1091:99–111. https://doi.org/10.1007/978-981-13-1370-7_6

    Article  CAS  PubMed  Google Scholar 

  29. Niu Q (2018) Overview of the relationship between aluminum exposure and health of human being. Adv Exp Med Biol 1091:1–31. https://doi.org/10.1007/978-981-13-1370-7_1

    Article  CAS  PubMed  Google Scholar 

  30. Wang S, Meng H, Shang N, Guo J, Zhang T, Zhang S, Zhao Y, Zhang H, Zhang Q, Niu Q (2020) The relationship between plasma Al levels and multi-domain cognitive performance among in-service aluminum-exposed workers at the SH aluminum factory in China: a cross-sectional study. Neurotoxicology 76:144–152. https://doi.org/10.1016/j.neuro.2019.10.011

    Article  PubMed  Google Scholar 

  31. Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, Zhuang C, Wang X, Li Y (2016) Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. Chemosphere 151:289–295. https://doi.org/10.1016/j.chemosphere.2016.02.092

    Article  CAS  PubMed  Google Scholar 

  32. Bagepally BS, Balachandar R, Kalahasthi R, Tripathi R, Haridoss M (2021) Association between aluminium exposure and cognitive functions: a systematic review and meta-analysis. Chemosphere 268:128831. https://doi.org/10.1016/j.chemosphere.2020.128831

    Article  CAS  PubMed  Google Scholar 

  33. Cheng XJ, Guan FL, Li Q, Dai G, Li HF, Li XK (2020) AlCl3 exposure regulates neuronal development by modulating DNA modification. World J Stem Cells 12(11):1354–1365. https://doi.org/10.4252/wjsc.v12.i11.1354

    Article  PubMed  PubMed Central  Google Scholar 

  34. Squitti R, Mendez A, Ricordi C, Siotto M, Goldberg R (2019) Copper in glucose intolerance, cognitive decline, and Alzheimer disease. Alzheimer Dis Assoc Disord 33(1):77–85. https://doi.org/10.1097/wad.0000000000000280

    Article  CAS  PubMed  Google Scholar 

  35. Brewer GJ (2010) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23(2):319–326. https://doi.org/10.1021/tx900338d

    Article  CAS  PubMed  Google Scholar 

  36. Behzadfar L, Abdollahi M, Sabzevari O, Hosseini R, Salimi A, Naserzadeh P, Sharifzadeh M, Pourahmad J (2017) Potentiating role of copper on spatial memory deficit induced by beta amyloid and evaluation of mitochondrial function markers in the hippocampus of rats. Metallomics 9(7):969–980. https://doi.org/10.1039/c7mt00075h

    Article  CAS  PubMed  Google Scholar 

  37. Al-khateeb E, Al-zayadneh E, Al-dalahmah O, Alawadi Z, khatib F, Naffa R, Shafagoj Y (2014) Relation between copper, lipid profile, and cognition in elderly Jordanians. J. Alzheimers Dis. 41(1):203-11. https://doi.org/10.3233/jad-132180

  38. Sivtseva AI, Sivtseva EN, Shadrina SS, Melnikov VN, Boyakova SI, Dokhunaeva AM (2020) Microelement composition of serum in Dolgans, indigenous inhabitants of the Russian Arctic, in the conditions of industrial development of territories. Int J Circumpolar Health 79(1):1764304. https://doi.org/10.1080/22423982.2020.1764304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roberts BR, Doecke JD, Rembach A, Yévenes LF, Fowler CJ, McLean CA, Lind M, Volitakis I, Masters CL, Bush AI, Hare DJ (2016) Rubidium and potassium levels are altered in Alzheimer’s disease brain and blood but not in cerebrospinal fluid. Acta Neuropathol Commun 4(1):119. https://doi.org/10.1186/s40478-016-0390-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerhardsson L, Lundh T, Minthon L, Londos E (2008) Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25(6):508–515. https://doi.org/10.1159/000129365

    Article  CAS  PubMed  Google Scholar 

  41. Paschalis C, Jenner FA, Lee CR (1978) Effects of rubidium chloride on the course of manic-depressive illness. J R Soc Med 71(5):343–352

    Article  CAS  Google Scholar 

  42. [New vistas on rubidium]. (1977) Encephale 3(4):333–56.

  43. Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS (2018) Structure-based inhibitors of tau aggregation. Nat Chem 10(2):170–176. https://doi.org/10.1038/nchem.2889

    Article  CAS  PubMed  Google Scholar 

  44. Mari SA, Wegmann S, Tepper K, Hyman BT, Mandelkow EM, Mandelkow E, Müller DJ (2018) Reversible cation-selective attachment and self-assembly of human tau on supported brain lipid membranes. Nano Lett 18(5):3271–3281. https://doi.org/10.1021/acs.nanolett.8b01085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Angelis L (1991) Memory storage and effect of repeated treatment with a new antidepressant drug: rubidium chloride. J Int Med Res 19(5):395–402. https://doi.org/10.1177/030006059101900506

    Article  PubMed  Google Scholar 

  46. Liu H, Su L, Chen X, Wang S, Cheng Y, Lin S, Ding L, Liu J, Chen C, Unverzagt FW, Hake AM, Jin Y, Gao S (2021) Higher blood cadmium level is associated with greater cognitive decline in rural Chinese adults aged 65 or older. Sci Total Environ 756:144072. https://doi.org/10.1016/j.scitotenv.2020.144072

    Article  CAS  PubMed  Google Scholar 

  47. Bakulski KM, Seo YA, Hickman RC, Brandt D, Vadari HS, Hu H, Park SK (2020) Heavy metals exposure and Alzheimer’s disease and related dementias. J Alzheimers Dis 76(4):1215–1242. https://doi.org/10.3233/jad-200282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Zhang L, Abel GM, Storm DR, Xia Z (2018) Cadmium exposure impairs cognition and olfactory memory in male C57BL/6 mice. Toxicol Sci 161(1):87–102. https://doi.org/10.1093/toxsci/kfx202

    Article  CAS  PubMed  Google Scholar 

  49. Chouit Z, Djellal D, Haddad S, Hanfer M, Hachemi M, Lakroun Z, Chafaa S, Fetoui H, Kebieche M, Soulimani R (2021) Potentiation of the apoptotic signaling pathway in both the striatum and hippocampus and neurobehavioral impairment in rats exposed chronically to a low-dose of cadmium. Environ Sci Pollut Res Int 28(3):3307–3317. https://doi.org/10.1007/s11356-020-10755-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to express their gratitude to all the participants and cooperating units who helped in completing this study.

Funding

The study was supported by the National Natural Science Foundation of China (Grant Nos. 81760577, 81960583, and 81560523), the Guangxi Science and Technology Development Project (Grant Nos. AD 17129003 and 18050005), the Guangxi Natural Science Foundation for Innovation Research Team (2019GXNSFGA245002), and Guangxi Scholarship Fund of Guangxi Education Department of China.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study and collected samples. Junling Zhang, Qiumei Liu, Min Xu, Yanfei Wei, Yinxia Lin, Xiaoting Mo, Shenxiang Huang, and Shuzhen Liu measured trace element; Junling Zhang and Qiumei Liu drafted the manuscript; professor Jian Qin and Zhiyong Zhang supervised this study.

Corresponding authors

Correspondence to Jian Qin or Zhiyong Zhang.

Ethics declarations

Ethics Approval

Approval was obtained from the ethics committee of Guangxi Medical University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to Participate

Written informed consent files were received from all participants before the study.

Consent for Publication

The participant has consented to the submission of the case report to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Q., Xu, M. et al. Associations Between Plasma Metals and Cognitive Function in People Aged 60 and Above. Biol Trace Elem Res 200, 3126–3137 (2022). https://doi.org/10.1007/s12011-021-02941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02941-6

Keywords

Navigation