Skip to main content

Advertisement

Log in

Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Orthopedic implant coatings with optimal surface features to achieve favorable osteo/angio-genesis and inflammatory response would be of great importance. However, to date, few coatings are capable of fully satisfying these requirements. In this work, to take advantage of the structural complexity of micro/nano-topography and benefits of biological trace elements, two types of boron-containing nanostructures (nanoflakes and nanolamellars) were introduced onto plasma-sprayed calcium silicate (F-BCS and L-BCS) coatings via hydrothermal treatment. The C-CS coating using deionized water as hydrothermal medium served as control. Boron-incorporated CS coating stimulated osteoblastic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs). Specifically, the combination of β1 integrin-vinculin-mediated cell spreading and activation of bone morphogenetic protein signaling pathway acted synergistically to cause significant upregulation of runt-related transcription factor 2 (RUNX2) protein and Runx2 gene expression in BMSCs on the F-BCS coating surface, which induced the transcription of downstream osteogenic differentiation marker genes. F-BCS coating allowed specific boron ion release, which favored angiogenesis as evidenced by the enhanced migration and tube formation of human umbilical vein endothelial cells in the coating extract. Boron-incorporated coatings significantly suppressed the expression of toll-like receptor adaptor genes in RAW264.7 macrophages and subsequently the degradation of nuclear factor-κB inhibitor α, accompanied by the inactivation of the downstream pro-inflammatory genes. In vivo experiments confirmed that F-BCS-coated Ti implant possessed enhanced osseointegration compared with L-BCS- and C-CS-coated implants. These data highlighted the synergistic effect of specific nanotopography and boron release from orthopedic implant coating on improvement of osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loi F, Cordova LA, Pajarinen J, Lin TH, Yao ZY, Goodman SB (2016) Inflammation, fracture and bone repair. Bone 86:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lopes D, Martins-Cruz C, Oliveira MB, Mano JF (2018) Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 185:240–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malhotra A, Habibovic P (2016) Calcium phosphates and angiogenesis: implications and advances for bone regeneration. Trends Biotechnol 34(12):983–992

    Article  CAS  PubMed  Google Scholar 

  4. Gulati K, Hamlet SM, Ivanovski S (2018) Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J Mater Chem B 6(18):2677–2689

    Article  CAS  PubMed  Google Scholar 

  5. Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shao DD, Li K, You MY, Liu SW, Hu T, Huang LP, Xie YT, Zheng XB (2020) Macrophage polarization by plasma sprayed ceria coatings on titanium-based implants: cerium valence state matters. Appl Surf Sci 504:144070

    Article  CAS  Google Scholar 

  7. Goodman SB, Yao ZY, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao HL, Liu XY (2013) Plasma-sprayed ceramic coatings for osseointegration. Int J Appl Ceram Technol 10(1):1–10

    Article  CAS  Google Scholar 

  9. Zhou YL, Wu CT, Chang J (2019) Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater Today 24:41–56

    Article  CAS  Google Scholar 

  10. Hu C, Ashok D, Nisbet DR, Gautam V (2019) Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 219:119366

    Article  CAS  PubMed  Google Scholar 

  11. Li K, Xie YT, You MY, Huang LP, Zheng XB (2016) Cerium oxide-incorporated calcium silicate coating protects MC3T3-E1 osteoblastic cells from H2O2-induced oxidative stress. Biol Trace Elem Res 174(1):198–207

    Article  CAS  PubMed  Google Scholar 

  12. Lu X, Li K, Xie YT, Qi SC, Shen QY, Yu JM, Huang LP, Zheng XB (2019) Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. J Biomed Mater Res A 107(1):12–24

    Article  CAS  PubMed  Google Scholar 

  13. Li K, Yu JM, Xie YT, Huang LP, Ye XJ, Zheng XB (2013) Effects of Zn content on crystal structure, cytocompatibility, antibacterial activity, and chemical stability in Zn-modified calcium silicate coatings. J Therm Spray Technol 22(6):965–973

    Article  CAS  Google Scholar 

  14. Li K, Yu JM, Xie YT, You MY, Huang LP, Zheng XB (2017) The Effects of cerium oxide incorporation in calcium silicate coating on bone mesenchymal stem cell and macrophage responses. Biol Trace Elem Res 177(1):148–158

    Article  CAS  PubMed  Google Scholar 

  15. Li K, Xie YT, Ao HY, Huang LP, Ji H, Zheng XB (2013) The enhanced bactericidal effect of plasma sprayed zinc-modified calcium silicate coating by the addition of silver. Ceram Int 39(7):7895–7902

    Article  CAS  Google Scholar 

  16. Zhai WY, Lu HX, Wu CT, Chen L, Lin XT, Naoki K, Chen GP, Chang J (2013) Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014

    Article  CAS  PubMed  Google Scholar 

  17. Mao LX, Xia LG, Chang J, Liu JQ, Jiang LY, Wu CT, Fang B (2017) The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater 61:217–232

    Article  CAS  PubMed  Google Scholar 

  18. Lu X, Li K, Xie YT, Huang LP, Zheng XB (2016) Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings. J Mater Sci Mater Med 27(11):166

    Article  PubMed  CAS  Google Scholar 

  19. Li K, Lu X, Razanau I, Wu XD, Hu T, Liu SW, Xie YT, Huang LP, Zheng XB (2019) The enhanced angiogenic responses to ionic dissolution products from a boron-incorporated calcium silicate coating. Mater Sci Eng C 101:513–520

    Article  CAS  Google Scholar 

  20. Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C (2018) The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol 50:296–304

    Article  CAS  PubMed  Google Scholar 

  21. Zheng K, Fan YQ, Torre E, Balasubramanian P, Taccardi N, Cassinelli C, Morra M, Iviglia G, Boccaccini AR (2020) Incorporation of boron in mesoporous bioactive glass nanoparticles reduces inflammatory response and delays osteogenic differentiation. Part Part Syst Charact 37:2000054

    Article  CAS  Google Scholar 

  22. Spriano S, Yamaguchi S, Baino F, Ferraris S (2018) A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater 79:1–22

    Article  CAS  PubMed  Google Scholar 

  23. Li K, Liu SW, Hu T, Razanau I, Wu XD, Ao HY, Huang LP, Xie YT, Zheng XB (2020) Optimized nanointerface engineering of micro/nanostructured titanium implants to enhance cell-nanotopography interactions and osseointegration. Acs Biomater Sci Eng 6(2):969–983

    Article  PubMed  CAS  Google Scholar 

  24. Sun LM, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res 58(5):570–592

    Article  CAS  PubMed  Google Scholar 

  25. Gkomoza P, Lampropoulos GS, Vardavoulias M, Pantelis DI, Karakizis PN, Sarafoglou C (2019) Microstructural investigation of porous titanium coatings, produced by thermal spraying techniques, using plasma atomization and hydride-dehydride powders, for orthopedic implants. Surf Coat Technol 357:947–956

    Article  CAS  Google Scholar 

  26. Liu L, Wang XH, Zhou YN, Cai M, Lin KL, Fang B, Xia LG (2020) The synergistic promotion of osseointegration by nanostructure design and silicon substitution of hydroxyapatite coatings in a diabetic model. J Mater Chem B 8(14):2754–2767

    Article  CAS  PubMed  Google Scholar 

  27. Kane R, Ma PX (2013) Mimicking the nanostructure of bone matrix to regenerate bone. Mater Today 16(11):418–423

    Article  CAS  Google Scholar 

  28. Wang XH, Zhou YN, Xia LG, Zhao CC, Chen L, Yi DL, Chang J, Huang LP, Zheng XB, Zhu HY, Xie YT, Xu YJ, Lin KL (2015) Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf B Biointerfaces 126:358–366

    Article  CAS  PubMed  Google Scholar 

  29. Hu DD, Li K, Xie YT, Pan HH, Zhao J, Huang LP, Zheng XB (2017) The combined effects of nanotopography and Sr ion for enhanced osteogenic activity of bone marrow mesenchymal stem cells (BMSCs). J Biomater Appl 31(8):1135–1147

    Article  CAS  PubMed  Google Scholar 

  30. Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki-Toroudi H, Shafiee A, Moradi L (2019) Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces 6(13):1900572

    Article  CAS  Google Scholar 

  31. Liu SW, Li K, Hu T, Wu XD, Ao HY, Xie YT, Zheng XB (2020) Controlling preosteoblast behavior through manganese vacancy-rich birnessite with enhanced divalent cation modulation of fibronectin-integrin interactions. Adv Mater Interfaces 7(12):1902127

    Article  CAS  Google Scholar 

  32. Hu DD, Li K, Xie YT, Pan HH, Zhao J, Huang LP, Zheng XB (2016) Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings. J Mater Sci Mater Med 27(3):56

    Article  PubMed  CAS  Google Scholar 

  33. Huang YZ, He SK, Guo ZJ, Pi JK, Deng L, Dong L, Zhang Y, Su B, Da LC, Zhang L, Xiang Z, Ding W, Gong M, Xie HQ (2019) Nanostructured titanium surfaces fabricated by hydrothermal method: influence of alkali conditions on the osteogenic performance of implants. Mater Sci Eng C 94:1–10

    Article  CAS  Google Scholar 

  34. Ma QL, Zhao LZ, Liu RR, Jin BQ, Song W, Wang Y, Zhang YS, Chen LH, Zhang YM (2014) Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 35(37):9853–9867

    Article  CAS  PubMed  Google Scholar 

  35. Zhang XR, Li HT, Lin CC, Ning CQ, Lin KL (2018) Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway. Biomater Sci 6(2):418–430

    Article  CAS  PubMed  Google Scholar 

  36. Xia LG, Zhang N, Wang XH, Zhou YN, Mao LX, Liu JQ, Jiang XQ, Zhang ZY, Chang J, Lin KL, Fang B (2016) The synergetic effect of nano-structures and silicon-substitution on the properties of hydroxyapatite scaffolds for bone regeneration. J Mater Chem B 4(19):3313–3323

    Article  CAS  PubMed  Google Scholar 

  37. He XJ, Zhang XY, Li JF, Hang RQ, Huang XB, Yao XH, Qin L, Tang B (2018) Titanium-based implant comprising a porous microstructure assembled with nanoleaves and controllable silicon-ion release for enhanced osseointegration. J Mater Chem B 6(31):5100–5114

    Article  CAS  PubMed  Google Scholar 

  38. Jiang N, Guo ZJ, Sun D, Li YB, Yang YT, Chen C, Zhang L, Zhu SS (2018) Promoting osseointegration of Ti implants through micro/nanoscaled hierarchical Ti phosphate/Ti oxide hybrid coating. ACS Nano 12(8):7883–7891

    Article  CAS  PubMed  Google Scholar 

  39. Li K, Hu DD, Xie YT, Huang LP, Zheng XB (2018) Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions. Nanotechnology 29(8):084001

    Article  PubMed  CAS  Google Scholar 

  40. Wang J, Qian S, Liu XY, Xu LY, Miao XC, Xu ZY, Cao LY, Wang HL, Jiang XQ (2017) M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO2 surfaces. J Mater Chem B 5(18):3364–3376

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Wang M, Hu Y, Gong T, Zhang ZR, Yu RL, Fu Y (2020) Low-dose paclitaxel via hyaluronan-functionalized bovine serum albumin nanoparticulate assembly for metastatic melanoma treatment. J Mater Chem B 8(10):2139–2147

    Article  CAS  PubMed  Google Scholar 

  42. Li YF, Zou SJ, Wang DZ, Feng G, Bao CY, Hu J (2010) The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Biomaterials 31(12):3266–3273

    Article  CAS  PubMed  Google Scholar 

  43. Bai L, Du ZB, Du JJ, Yao W, Zhang JM, Weng ZM, Liu S, Zhao Y, Liu YL, Zhang XY, Huang XB, Yao XH, Crawford R, Hang RQ, Huang D, Tang B, Xiao Y (2018) A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration. Biomaterials 162:154–169

    Article  CAS  PubMed  Google Scholar 

  44. Zhou JH, Han Y, Lu SM (2014) Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings. Int J Nanomedicine 9:1243–1260

    PubMed  PubMed Central  Google Scholar 

  45. Lee J, Chu BH, Chen KH, Ren F, Lele TP (2009) Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells. Biomaterials 30(27):4488–4493

    Article  CAS  PubMed  Google Scholar 

  46. Gautrot JE, Malmstrom J, Sundh M, Margadant C, Sonnenberg A, Sutherland DS (2014) The nanoscale geometrical maturation of focal adhesions controls stem cell differentiation and mechanotransduction. Nano Lett 14(7):3945–3952

    Article  CAS  PubMed  Google Scholar 

  47. Blair HC, Larrouture QC, Li YN, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ (2017) Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev 23(3):268–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T (2005) Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer 4:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chandran SV, Vairamani M, Selvamurugan N (2019) Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Sci Rep 9(1):11900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lai CF, Cheng SL (2002) Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 277(18):15514–15522

    Article  CAS  PubMed  Google Scholar 

  51. Hata A, Chen YG (2016) TGF-beta signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8(9):a022061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK, Lou Y, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2008) Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 283(13):8412–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Celil AB, Hollinger JO, Campbell PG (2005) Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 95(3):518–528

    Article  CAS  PubMed  Google Scholar 

  54. Peiris D, Pacheco I, Spencer C, MacLeod RJ (2007) The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 292(3):G753–G766

    Article  CAS  PubMed  Google Scholar 

  55. Chen ZT, Wu CT, Gu WY, Klein T, Crawford R, Xiao Y (2014) Osteogenic differentiation of bone marrow MSCs by beta-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials 35(5):1507–1518

    Article  CAS  PubMed  Google Scholar 

  56. Li HY, Chang J (2013) Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater 9(2):5379–5389

    Article  CAS  PubMed  Google Scholar 

  57. Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM (1998) Vascular endothelial growth factor-c (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153(2):381–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li K, Shen QY, Xie YT, You MY, Huang LP, Zheng XB (2017) Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization. J Biomater Appl 31(7):1062–1076

    Article  CAS  PubMed  Google Scholar 

  59. Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264

    Article  CAS  Google Scholar 

  60. Fekonja O, Avbelj M, Jerala R (2012) Suppression of TLR signaling by targeting TIR domain-containing proteins. Curr Protein Pept Sci 13(8):776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McWhorter FY, Wang TT, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA 110(43):17253–17258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51971236), and the Youth Innovation Promotion Association, CAS (Grant No. 2020254). This work was sponsored by Natural Science Foundation of Shanghai (19ZR1456700 ). The Inflammatory environment of annular fibrosus promote RSPO2/WNT/BMP loop in intervertebral disc calcification.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Wu or Xuebin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1189 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Lu, X., Liu, S. et al. Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res 199, 3801–3816 (2021). https://doi.org/10.1007/s12011-020-02517-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02517-w

Keywords

Navigation