Skip to main content
Log in

Exposed to Mercury-Induced Oxidative Stress, Changes of Intestinal Microflora, and Association between them in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Twelve Kunming mice were randomly divided into two groups (n = 6), and administered with distilled water containing 0 mg/L and 160 mg/L HgCl2 respectively, with an experimental period of 3 days. Our results showed that mercury exposure significantly reduced weight gain in mice (P < 0.01). Through pathological observation of cecum tissues, significant pathological changes were observed in cecum tissues of mice exposed to mercury. Furthermore, mercury exposure not only significantly increased malondialdehyde (MDA) content in mice (P < 0.01) but also significantly decreased superoxide dismutase (SOD) activity (P < 0.01) and glutathione peroxidase (GSH) level in mice (P < 0.01). Furthermore, high-throughput sequencing analysis showed that at the genus level some microbial populations including Clostridiales, Lactobacillus, Treponema, Oscillospira, and Desulfovibrio were significantly increased whereas some microbial populations including S24-7, Acinetobacter, and Staphylococcus were significantly decreased. Moreover, correlation analysis indicated that microorganisms were not correlated with biomarkers of oxidative stress. In summary, mercury exposure reduced the growth performance of mice, resulting in gut microbiota alterations, and led to oxidative stress by increasing the concentration of malondialdehyde (MDA) and decreasing the concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MDA:

malondialdehyde

GSH:

glutathione peroxidase

SOD:

superoxide dismutase

WHO:

World Health Organization

References

  1. Liu J, Xu X, Yu S, Cheng H, Hong Y, Feng X (2014) Mercury pollution in fish from South China Sea: levels, species-specific accumulation, and possible sources. Environ Res 131:160–164. https://doi.org/10.1016/j.envres.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  2. Jiang GB, Shi JB, Feng XB (2006) Mercury pollution in China. An overview of the past and current sources of the toxic metal. Environ Sci Technol 40(12):3673–3678. https://doi.org/10.1021/es062707c

    Article  PubMed  Google Scholar 

  3. de Burbure C, Buchet JP, Leroyer A, Nisse C, Haguenoer JM, Mutti A, Smerhovsky Z, Cikrt M, Trzcinka-Ochocka M, Razniewska G, Jakubowski M, Bernard A (2006) Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect 114(4):584–590. https://doi.org/10.1289/ehp.8202

    Article  CAS  PubMed  Google Scholar 

  4. Li S, Baiyun R, Lv Z, Li J, Han D, Zhao W, Yu L, Deng N, Liu Z, Zhang Z (2019) Exploring the kidney hazard of exposure to mercuric chloride in mice:Disorder of mitochondrial dynamics induces oxidative stress and results in apoptosis. Chemosphere 234:822–829. https://doi.org/10.1016/j.chemosphere.2019.06.096

    Article  CAS  PubMed  Google Scholar 

  5. Liu B, Yu H, Baiyun R, Lu J, Li S, Bing Q, Zhang X, Zhang Z (2018) Protective effects of dietary luteolin against mercuric chloride-induced lung injury in mice: involvement of AKT/Nrf2 and NF-kappaB pathways. Food Chem Toxicol 113:296–302. https://doi.org/10.1016/j.fct.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  6. Bollengier-Lee S, Mitchell MA, Utomo DB, Williams PE, Whitehead CC (1998) Influence of high dietary vitamin E supplementation on egg production and plasma characteristics in hens subjected to heat stress. Br Poult Sci 39(1):106–112. https://doi.org/10.1080/00071669889466

    Article  CAS  PubMed  Google Scholar 

  7. Yuan M, Li D, Zhang Z, Sun H, An M, Wang G (2018) Endometriosis induces gut microbiota alterations in mice. Hum Reprod 33(4):607–616. https://doi.org/10.1093/humrep/dex372

    Article  CAS  Google Scholar 

  8. Rueda-Ruzafa L, Cruz F, Roman P, Cardona D (2019) Gut microbiota and neurological effects of glyphosate. Neurotoxicology 75:1–8. https://doi.org/10.1016/j.neuro.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  9. Kou H, Fu Y, He Y, Jiang J, Gao X, Zhao H (2019) Chronic lead exposure induces histopathological damage, microbiota dysbiosis and immune disorder in the cecum of female Japanese quails (Coturnix japonica). Ecotoxicol Environ Saf 183:109588. https://doi.org/10.1016/j.ecoenv.2019.109588

    Article  CAS  PubMed  Google Scholar 

  10. Ruan Y, Wu C, Guo X, Xu Z, Xing C, Cao H, Zhang C, Hu G, Liu P (2019) High doses of copper and mercury changed cecal microbiota in female mice. Biol Trace Elem Res 189(1):134–144. https://doi.org/10.1007/s12011-018-1456-1

    Article  CAS  PubMed  Google Scholar 

  11. Skrypnik K, Suliburska J (2018) Association between the gut microbiota and mineral metabolism. J Sci Food Agric 98(7):2449–2460. https://doi.org/10.1002/jsfa.8724

    Article  CAS  PubMed  Google Scholar 

  12. Skrypnik K, Bogdanski P, Sobieska M, Suliburska J (2020) Hepcidin and erythroferrone correlate with hepatic Iron transporters in rats supplemented with multispecies probiotics. Molecules 25(7):1674. https://doi.org/10.3390/molecules25071674

    Article  CAS  PubMed Central  Google Scholar 

  13. Li S, Jiang X, Luo Y, Zhou B, Shi M, Liu F, Sha A (2019) Sodium/calcium overload and Sirt1/Nrf2/OH-1 pathway are critical events in mercuric chloride-induced nephrotoxicity. Chemosphere 234:579–588. https://doi.org/10.1016/j.chemosphere.2019.06.095

    Article  CAS  PubMed  Google Scholar 

  14. Skrypnik K, Bogdański P, Schmidt M, Suliburska J (2019) The effect of multispecies probiotic supplementation on iron status in rats. Biol Trace Elem Res 192(2):234–243. https://doi.org/10.1007/s12011-019-1658-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sutton DJ, Tchounwou PB (2007) Mercury induces the externalization of phosphatidyl-serine in human renal proximal tubule (HK-2) cells. Int J Environ Res Public Health 4(2):138–144. https://doi.org/10.3390/ijerph2007040008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pal PB, Pal S, Das J, Sil PC (2012) Modulation of mercury-induced mitochondria-dependent apoptosis by glycine in hepatocytes. Amino Acids 42(5):1669–1683. https://doi.org/10.1007/s00726-011-0869-3

    Article  CAS  PubMed  Google Scholar 

  17. Ansaldo M, Najle R, Luquet CM (2005) Oxidative stress generated by diesel seawater contamination in the digestive gland of the Antarctic limpet Nacella concinna. Mar Environ Res 59(4):381–390. https://doi.org/10.1016/j.marenvres.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  18. Troost FJ, Saris WH, Haenen GR, Bast A, Brummer RJ (2003) New method to study oxidative damage and antioxidants in the human small bowel: effects of iron application. Am J Physiol Gastrointest Liver Physiol 285(2):G354–G359. https://doi.org/10.1152/ajpgi.00422.2002

    Article  CAS  PubMed  Google Scholar 

  19. McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243(21):5753–5760

    Article  CAS  Google Scholar 

  20. Deng Q, Xu J, Yu B, He J, Zhang K, Ding X, Chen D (2010) Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress. Arch Anim Nutr 64(1):12–21. https://doi.org/10.1080/17450390903169138

    Article  CAS  PubMed  Google Scholar 

  21. Kawauchiya T, Takumi R, Kudo Y, Takamori A, Sasagawa T, Takahashi K, Kikuchi H (2011) Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells. Toxicol Lett 205(2):196–202. https://doi.org/10.1016/j.toxlet.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  22. Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang BB, Liu YM, Hu AL, Xu SF, Fan LD, Cheng ML, Li C, Wei LX, Liu J (2019) HgS and Zuotai differ from HgCl2 and methyl mercury in intestinal Hg absorption, transporter expression and gut microbiome in mice. Toxicol Appl Pharmacol 379:114615. https://doi.org/10.1016/j.taap.2019.114615

    Article  CAS  PubMed  Google Scholar 

  24. Ye F, Li X, Li L, Lyu L, Yuan J, Chen J (2015) The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol 86:191–201. https://doi.org/10.1016/j.fct.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  25. El-Saeed GSM, Abdel Maksoud SA, Bassyouni HT, Raafat J, Agybi MH, Wahby AA, Aly HM (2016) Mercury toxicity and DNA damage in patients with Down syndrome. Med Res J 15(1):22–26. https://doi.org/10.1097/01.MJX.0000483973.37399.e7

    Article  Google Scholar 

  26. Yang J, Zhang X, Xie Y, Song C, Sun J, Zhang Y, Giesy JP, Yu H (2017) Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen. Environ Sci Technol 51(5):3057–3064. https://doi.org/10.1021/acs.est.6b05606

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China grant (no. 31960723; 31460679 Beijing, P. R. China) awarded to PL and the Natural Science Foundation of Jiangxi Province grant (no. 20171ACB21026; 2017ACB20012) awarded to PL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yulan Zhao and Changming Zhou are equal first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhou, C., Guo, X. et al. Exposed to Mercury-Induced Oxidative Stress, Changes of Intestinal Microflora, and Association between them in Mice. Biol Trace Elem Res 199, 1900–1907 (2021). https://doi.org/10.1007/s12011-020-02300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02300-x

Keywords

Navigation