Skip to main content
Log in

Genotoxic Consequences in Common Grass Carp (Ctenopharyngodon idella Valenciennes, 1844) Exposed to Selected Toxic Metals

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The primary aim of the current study was to recognize the biomarker approach as the finest tool to identify the geno-toxicological effects of copper, chromium, and lead inside the blood of grass carp using micronucleus test and comet assay. The induced micronuclei frequency in response to the administered concentrations of LC50 metals was discovered in the erythrocytes of metal-exposed fish at four-time intervals. The genotoxic effect of these metals with respect to the formation of micronuclei was ranked as chromium > lead > copper. Percentages of other cellular and nuclear abnormalities were also determined in the exposed blood films. Equally, the genotoxic studies in terms of comet assay in fish blood revealed significant deviations p < 0.05 against each of the studied metal at their respective time interval as compared with the healthy fish group. However, induced frequency of micronuclei and the calculated DNA damage were not found to be duration dependent. Consequently, copper, chromium, and lead have been explored as cytotoxic elements that can be responsible for inducing genotoxic effects in fish existing aquatic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oropesa A-L, García-Cambero JP, Soler F (2009) Glutathione and malondialdehyde levels in common carp after exposure to simazine. Environ Toxicol Pharmacol 27(1):30–38. https://doi.org/10.1016/j.etap.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  2. Vinodhini R, St. Xavier’s College, Aquatic Biodiversity Research Centre, Palayamkottai (India), Narayanan M, St. Xavier’s College, Aquatic Biodiversity Research Centre, Palayamkottai (India) (2009) Ağır metallere maruz bırakılan Pullu Sazanlarda (Cyprinus carpio L.) antioksidan enzimlerdeki biyokimyasal değişiklikler. v. 33

  3. Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Sci 3(2):24–38

    Google Scholar 

  4. Paul MS, Varun M, D’Souza R, Favas PJC, Pratas J (2014) Metal contamination of soils and prospects of phytoremediation in and around River Yamuna: a case study from North-Central India. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination. InTech, Rijeka. https://doi.org/10.5772/57239

    Chapter  Google Scholar 

  5. Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source, impact, and remedies. In: Biomanagement of metal-contaminated soils. Springer, pp 1–28

  6. Nwabunike M (2016) The effects of bioaccumulation of heavy metals on fish fin over two years. J Fisheries Livest Prod :1–7

  7. Awoyemi OM, Bawa-Allah KA, Otitoloju AA (2014) Accumulation and anti-oxidant enzymes as biomarkers of heavy metal exposure in Clarias gariepinus and Oreochromis niloticus. Appl Ecol Environ Sci 2(5):114–122

    Google Scholar 

  8. Singha Roy U, Chattopadhyay B, Datta S, Mukhopadhyay SK (2011) Metallothionein as a biomarker to assess the effects of pollution on Indian major carp species from wastewater-fed fishponds of East Calcutta Wetlands (a Ramsar site). Environ Res Eng Manag 58(4). https://doi.org/10.5755/j01.erem.58.4.660

  9. Bauvais C, Zirah S, Piette L, Chaspoul F, Domart-Coulon I, Chapon V, Gallice P, Rebuffat S, Perez T, Bourguet-Kondracki ML (2015) Sponging up metals: bacteria associated with the marine sponge Spongia officinalis. Mar Environ Res 104:20–30. https://doi.org/10.1016/j.marenvres.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  10. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140

    Article  CAS  Google Scholar 

  11. Yedjou CG, Patlolla AK, Sutton DJ, Tchounwou PB (2012) Heavy metals toxicity and the environment. Published in final edited form as: EXS 3:133–164

    Google Scholar 

  12. Arruti A, Fernandez-Olmo I, Irabien A (2010) Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit 12(7):1451–1458. https://doi.org/10.1039/b926740a

    Article  CAS  PubMed  Google Scholar 

  13. Wagner A, Boman J (2003) Biomonitoring of trace elements in muscle and liver tissue of freshwater fish. Spectrochim Acta B At Spectrosc 58(12):2215–2226. https://doi.org/10.1016/j.sab.2003.05.003

    Article  CAS  Google Scholar 

  14. Ardeshir RA, Movahedinia A-A, Rastgar S (2017) Fish liver biomarkers for heavy metal pollution: a review article. Am J Toxicol 2(1):1–8

    Google Scholar 

  15. Sabullah MK, Ahmad SA, Shukor MY, Shamaan NA (2015) Heavy metal biomarker: fish behavior, cellular alteration, enzymatic reaction and proteomics approaches. Int Food Res J 22(2):435–454

    CAS  Google Scholar 

  16. Liney KE, Hagger JA, Tyler CR, Depledge MH, Galloway TS, Jobling S (2006) Health effects in fish of long-term exposure to effluents from wastewater treatment works. Environ Health Perspect 114(Suppl 1):81–89. https://doi.org/10.1289/ehp.8058

    Article  PubMed  Google Scholar 

  17. Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res Rev Mutat Res 681(1):80–92. https://doi.org/10.1016/j.mrrev.2008.03.001

    Article  CAS  Google Scholar 

  18. Bagdonas E, Vosylienė M (2006) A study of toxicity and genotoxicity of copper, zinc and their mixture to rainbow trout (Oncorhynchus mykiss). Biologija (1)

  19. Gabbianelli R, Lupidi G, Villarini M, Falcioni G (2003) DNA damage induced by copper on erythrocytes of gilthead sea bream Sparus aurata and mollusk Scapharca inaequivalvis. Arch Environ Contam Toxicol 45(3):350–356

    Article  CAS  Google Scholar 

  20. Goodale BC, Walter R, Pelsue SR, Thompson WD, Wise SS, Winn RN, Mitani H, Wise JP Sr (2008) The cytotoxicity and genotoxicity of hexavalent chromium in medaka (Oryzias latipes) cells. Aquat Toxicol 87(1):60–67

    Article  CAS  Google Scholar 

  21. de Lemos CT, Rödel PM, Terra NR, Erdtmann B (2001) Evaluation of basal micronucleus frequency and hexavalent chromium effects in fish erythrocytes. Environ Toxicol Chem 20(6):1320–1324

    Article  Google Scholar 

  22. Sunjog K, Gačić Z, Kolarević S, Višnjić-Jeftić Ž, Jarić I, Knežević-Vukčević J, Vuković-Gačić B, Lenhardt M (2012) Heavy metal accumulation and the genotoxicity in barbel (Barbus barbus) as indicators of the Danube River pollution. Sci World J 2012:1–6

    Article  Google Scholar 

  23. Maccubbin AE (1994) DNA adduct analysis in fish: laboratory and field studies. Aquat. Toxicol: Molecular, Biochemical, and Cellular Perspectives:267–294

  24. Shugart LR (2000) DNA damage as a biomarker of exposure. Ecotoxicology 9(5):329–340

    Article  CAS  Google Scholar 

  25. Laboratory Animal Science A, Universities Federation for Animal W (1990) Guidelines on the care of laboratory animals and their use for scientific purposes. 4, 4. Laboratory Animals Science Association; Universities Federation for Animal Welfare, London; Potters Bar

  26. APHA (2018) 2020 QUALITY ASSURANCE/QUALITY CONTROL (2017). In: Standard methods for the examination of water and wastewater. Standard methods for the examination of water and wastewater. Am Public Health Assoc. https://doi.org/10.2105/SMWW.2882.015

  27. Imanpoor MR, Bagheri T, Hedayati SAA (2010) The anesthetic effects of clove essence in Persian sturgeon, Acipenser persicus. WJFMS 2(1):29–36

  28. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285(1):35–44

    Article  CAS  Google Scholar 

  29. Khan MS, Qureshi NA, Jabeen F (2017) Assessment of toxicity in fresh water fish Labeo rohita treated with silver nanoparticles. Appl Nanosci 7(5):167–179

    Article  CAS  Google Scholar 

  30. Mohammed DS, El Haliem NGA (2013) Histological study on the possible protective role of parsley oil on prednisolone-induced liver and lung injury in adult male albino rats. EJH 36(2):439–448. https://doi.org/10.1097/01.EHX.0000429317.64942.2b

  31. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534(1–2):65–75

    Article  CAS  Google Scholar 

  32. Shah AI (2017) Heavy metal impact on aquatic life and human health–an over view. In: IAIA17 Conference Proceedings| IA’s Contribution in Addressing Climate Change 37th Annual Conference of the International Association for Impact Assessment, pp 4–7

  33. Anbumani S, Mohankumar MN (2012) Gamma radiation induced micronuclei and erythrocyte cellular abnormalities in the fish Catla catla. Aquat Toxicol 122:125–132

    Article  Google Scholar 

  34. da Silva ST, Fontanetti CS (2006) Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent. Mutat Res 605(1–2):87–93

    Google Scholar 

  35. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  36. Osipov A, Arkhangelskaya E, Vinokurov A, Smetaninа N, Zhavoronkov A, Klokov D (2014) DNA comet Giemsa staining for conventional bright-field microscopy. Int J Mol Sci 15(4):6086–6095

    Article  Google Scholar 

  37. Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement M-V (2014) OpenComet: an automated tool for comet assay image analysis. Redox Biol 2:457–465. https://doi.org/10.1016/j.redox.2013.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kašuba V, Rozgaj R, Sarić MM, Blanuša M (2002) Evaluation of genotoxic damage of cadmium chloride in peripheral blood of suckling Wistar rats. J Appl Toxicol 22(4):271–277

    Article  Google Scholar 

  39. Rozgaj R, Kašuba V, Fučić A (2002) Genotoxicity of cadmium chloride in human lymphocytes evaluated by the comet assay and cytogenetic tests. J Trace Elem Med Biol 16(3):187–192

    Article  CAS  Google Scholar 

  40. Jiraungkoorskul W, Kosai P, Sahaphong S, Kirtputra P, Chawlab J, Charucharoen S (2007) Evaluation of micronucleus test’s sensitivity in freshwater fish species. Res J Environ Sci 1(2):56–63

    Article  CAS  Google Scholar 

  41. Hussain B, Sultana T, Sultana S, Masoud MS, Ahmed Z, Mahboob S (2018) Fish eco-genotoxicology: comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution. Saudi J Biol Sci 25(2):393–398. https://doi.org/10.1016/j.sjbs.2017.11.048

  42. Serrano-García L, Montero-Montoya R (2001) Micronuclei and chromatid buds are the result of related genotoxic events. Environ Mol Mutagen 38(1):38–45

    Article  Google Scholar 

  43. Pietrapiana D, Modena M, Guidetti P, Falugi C, Vacchi M (2002) Evaluating the genotoxic damage and hepatic tissue alterations in demersal fish species: a case study in the Ligurian Sea (NW-Mediterranean). Mar Pollut Bull 44(3):238–243

    Article  CAS  Google Scholar 

  44. Çavaş T, Ergene-Gözükara S (2003) Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (AgNORs) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent. Mutat Res 538(1–2):81–91

    Article  Google Scholar 

  45. Matsumoto ST, Mantovani MS, Malaguttii MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol Biol 29(1):148–158

    Article  CAS  Google Scholar 

  46. Scalon MC, Rechenmacher C, Siebel AM, Kayser ML, Rodrigues MT, Maluf SW, Rodrigues MA, Silva LB (2010) Evaluation of Sinos River water genotoxicity using the comet assay in fish. Braz J Biol 70(4):1217–1222 

  47. Kousar S, Javed M (2015) Diagnosis of metals induced DNA damage in fish using comet assay. Pak Vet J 35(2):168–172

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazish Shah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethical approval for the study was taken from the Ethical Committee, University of Peshawar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N., Khan, A., Habib Khan, N. et al. Genotoxic Consequences in Common Grass Carp (Ctenopharyngodon idella Valenciennes, 1844) Exposed to Selected Toxic Metals. Biol Trace Elem Res 199, 305–314 (2021). https://doi.org/10.1007/s12011-020-02122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02122-x

Keywords

Navigation