Skip to main content
Log in

Synthesis of Cobalt Hydroxide Nano-flakes Functionalized with Glutamic Acid and Conjugated with Thiosemicarbazide for Anticancer Activities Against Human Breast Cancer Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In recent years, researchers were attracted to nanomaterials components for their potential role in cancer treatment. This study aimed to develop a novel and biocompatible cobalt hydroxide (Co(OH)2) nano-flakes that is functionalized by glutamic acid (Glu) and conjugated to thiosemicarbazide (TSC) for anticancer activities against human breast cancer MCF-7 cells. Physico-chemical properties of the Co(OH)2@Glu-TSC nanomaterial are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X–ray (EDX) analysis, and Fourier-transform infrared (FT-IR) spectroscopy. MTT assay, flow cytometry, and caspase-3 activity analysis used for evaluating anticancer properties of the Co(OH)2@Glu-TSC nanomaterial. The MTT assay result showed cellular uptake of Co(OH)2@Glu-TSC and cell viability loss in a concentration-dependent. Results of flow cytometry and caspase-3 activity analysis indicated the stimulation of apoptosis through an increase in Caspase-3 and nucleus fragmentation. In general, our findings indicate the anticancer activities of Co(OH)2@Glu-TSC nanomaterial and so it can be considered as a new treatment for breast cancer. However, further in vivo studies are required to evaluate the accumulation of Co(OH)2@Glu-TSC nanomaterial in healthy organs, such as the liver, kidneys, brain, and testes, and potential toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2018) Global and regional estimates of the incidence and mortality for 38 cancers: GLOBOCAN. International Agency for Research on Cancer/World Health Organization, Lyon

    Google Scholar 

  2. Melo A, Amadeu MS, Lancellotti M, de Hollanda LM, Machado D (2015) The role of nanomaterials in cosmetics: national and international legislative aspects. Quim Nova 38(4):1–19

    Google Scholar 

  3. Schreiber HA, Prechl J, Jiang H, Zozulya A, Fabry Z, Denes F, Sandor M (2010) Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells. J Immunol Methods 356:47–59. https://doi.org/10.1016/j.jim.2010.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8:147–166

    Article  CAS  Google Scholar 

  5. Cheng J, Teply BA, Jeong SY, Yim CH, Ho D, Sherifi I, Jon S, Farokhzad OC, Khademhosseini A, Langer RS (2006) Magnetically responsive poltmeric microparticles for oral delivery of protein drugs. Pharm Res 23:557–564. https://doi.org/10.1007/s11095-005-9444-5

    Article  CAS  PubMed  Google Scholar 

  6. Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65–79

    Article  CAS  Google Scholar 

  7. Vinardell MP, Mitjans M (2015) Antitumor activities of metal oxide nanoparticles. Nanomaterials 5:1004–1021

    Article  CAS  Google Scholar 

  8. Sharma A, Goyal AK, Rath G (2017) Recent advances in metal nanoparticles in cancer therapy. J Drug Target 26(8):617–632. https://doi.org/10.1080/1061186X.2017.1400553

    Article  PubMed  Google Scholar 

  9. Liu SH, Xing RM, Lu F, Rana RK, Zhu JJ (2009) One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. J Phys Chem C 113:21042–21047

    Article  CAS  Google Scholar 

  10. Azaria LH, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, Romano R, Rossi F, Schindler UG, Sommer D, Uboldi C, Unger RE, Villiers C (2011) Predictive toxicology of cobalt nanoparticles and ions: com-parative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci 122:489–501

    Article  Google Scholar 

  11. Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, Di Giampaolo L, Dadorante V, Schiavone C, Boscolo P, Mariani Costantini R, Di Gioacchino M (2006) Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol 19:11–14

  12. Mo Y, Zhu X, Hu X, Tollerud DJ, Zhang Q (2008) Cytokine and NO release from peripheral blood neutrophils after exposure to metal nanoparticles: in vitro and ex vivo studies. Nanotoxicology 2:79–87

    Article  CAS  Google Scholar 

  13. Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F (2009) Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3 T3 mouse fibroblasts. Mutagenesis 24:439–445

    Article  CAS  Google Scholar 

  14. Papis E, Rossi F, Raspanti M, Isabella DD, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

    Article  CAS  Google Scholar 

  15. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric system for controlled drug release. Chem Rev 99:3181–3198. https://doi.org/10.1021/cr940351u

    Article  CAS  PubMed  Google Scholar 

  16. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347. https://doi.org/10.1016/S0169-409X(02)00228-4

    Article  CAS  PubMed  Google Scholar 

  17. Marin RV, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26:5414–5426. https://doi.org/10.1016/j.biomaterials

    Article  Google Scholar 

  18. Marinakos SM, Anderson MF, Ryan JA, Martin LD, Feldheim DL (2001) Encapsulation, permeability, and cellular uptake characteristics of hollow nanometer-sized conductive polymer capsules. J Phys Chem B 105:8872–8876. https://doi.org/10.1021/jp010820d

    Article  CAS  Google Scholar 

  19. Shih IL, Van YT, Shen MH (2004) Biomedical applications of chemically and microbiologically synthesized poly (glutamic acid) and poly (lysine). Mini Rev Med Chem 4(2):179–188

    Article  CAS  Google Scholar 

  20. Tiperciuc B, Pârvu A, Tamaian R, Nastasă C, Ionuţ I, Oniga O (2013) New anti-inflammatory thiazolyl-carbonyl-thiosemicarbazides and thiazolyl-azoles with antioxidant properties as potential iNOS inhibitors. Arch Pharm Res 36(6):702–714. https://doi.org/10.1007/s12272-013-0083-9

    Article  CAS  PubMed  Google Scholar 

  21. Cihan-Üstündağ G, Gürsoy E, Naesens L, Ulusoy-Güzeldemirci N, Çapan G (2016) Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg Med Chem 24(2):240–246. https://doi.org/10.1016/j.bmc.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  22. Siwek A, Stefańska J, Dzitko K, Ruszczak A (2012) Antifungal effect of 4-arylthiosemicarbazides against Candida species. Search for molecular basis of antifungal activity of thiosemicarbazide derivatives. J Mol Model 18(9):4159–4170. https://doi.org/10.1007/s00894-012-1420-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalhor M, Shabani M, Nikokar I, Reyhaneh Banisaeed S (2015) Synthesis, characterization and antibacterial activity of some novel thiosemicarbazides, 1,2,4-triazol-3-thiols and their S-substituted derivatives. Iran J Pharm Res 14(1):67–75

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Unsal Tan O, Ozadali K, Yogeeswari P, Sriram D, Balkan A (2012) Synthesis and antimycobacterial activities of some new N-acylhydrazone and thiosemicarbazide derivatives of 6-methyl-4,5-dihydropyridazin-3(2H)-one. Med Chem Res 21:2388–2394. https://doi.org/10.1007/s00044-011-9770-6

    Article  CAS  Google Scholar 

  25. Arora S, Agarwal S, Singhal S (2014) Anticancer activities of thiosemicarbazides/thiosemicarbazones: a review. Int J Pharm Pharm Sci 6(9):34–41

    CAS  Google Scholar 

  26. Li J, Yang M, Wei J, Zhou Z (2012) Preparation and electrochemical performances of doughnut-like Ni (OH)2–Co (OH)2 composites as pseudocapacitor materials. Nanoscale 4:4498–4503. https://doi.org/10.1039/c2nr30936j

    Article  CAS  PubMed  Google Scholar 

  27. Navarrete JTL, Hernández V, Ramírez FJ (1995) Vibrational study of aspartic acid and glutamic acid dipeptides. J Mol Struct 348:249–252

    Article  Google Scholar 

  28. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis, and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162

    Article  CAS  Google Scholar 

  29. Ma DD, Yang WX (2016) Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 7(26):40882–40903. https://doi.org/10.18632/oncotarget.8553

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shafagh M, Rahmani F, Delirezh N (2015) CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran J Basic Med Sci 18(10):993–1000

    PubMed  PubMed Central  Google Scholar 

  31. Nuñez G, Benedict MA, Hu Y (1998) Inohara N, caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245

    Article  Google Scholar 

  32. Abudayyak M, Gurkaynak TA, Özhan G (2017) In vitro evaluation of cobalt oxide nanoparticle-induced toxicity. Toxicol Ind Health 33(8):646–654. https://doi.org/10.1177/0748233717706633

    Article  CAS  PubMed  Google Scholar 

  33. Alarifi S, Ali D, AO Y, Ahamed M, Siddiqui MA, Al-Khedhairy AA (2013) Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int J Nanomedicine 8:189–199. https://doi.org/10.2147/IJN.S37924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chattopadhyay S, Chakraborty SP, Laha D, Baral R, Pramanik P (2012) Roy S surface-modified cobalt oxide nanoparticles: new opportunities for anti-cancer drug development. Cancer Nanotechnol 3(1–6):13–23

    Article  CAS  Google Scholar 

  35. Shao J, Ma ZY, Li A, Liu YH, Xie CZ, Qiang ZY, Xu JY (2014) Thiosemicarbazone Cu (II) and Zn (II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity. J Inorg Biochem 136:13–23. https://doi.org/10.1016/j.jinorgbio.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Eckle VS, Buchmann A, Bursch W, Schulte-Hermann R, Schwarz M (2004) Immunohistochemical detection of activated caspases in apoptotic hepatocytes in rat liver. Toxicol Pathol 32(1):9–15. https://doi.org/10.1080/01926230490260673

    Article  CAS  PubMed  Google Scholar 

  37. Krishnan P, Rajan M, Kumari S, Sakinash S, Priya SP, Amira F, Danjuma L, Pooi Ling M, Fakurazi S, Arulselvan P, Higuchi A, Arumugam R, Alarfaj AA, Munusamy MA, Hamat RA, Benelli G, Murugan K, Kumar SS (2017) Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe3O4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep 7(1):10962. https://doi.org/10.1038/s41598-017-09140-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chattopadhyay S, Dash SK, Ghosh T, Das D, Pramanik P, Roy S (2013) Surface modification of cobalt oxide nanoparticles using phosphonomethyl iminodiacetic acid followed by folic acid: a biocompatible vehicle for targeted anticancer drug delivery. Cancer Nanotechnol 4(4–5):103–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejarbaneh, M., Moradi-Shoeili, Z., Jalali, A. et al. Synthesis of Cobalt Hydroxide Nano-flakes Functionalized with Glutamic Acid and Conjugated with Thiosemicarbazide for Anticancer Activities Against Human Breast Cancer Cells. Biol Trace Elem Res 198, 98–108 (2020). https://doi.org/10.1007/s12011-020-02049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02049-3

Keywords

Navigation