Skip to main content
Log in

Evaluation of Status of Trace and Toxic Metals in Biological Samples (Scalp Hair, Blood, and Urine) of Normal and Anemic Children of Two Age Groups

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 January 2011

Abstract

Anemia affects a substantial portion of the world’s population, provoking severe health problems as well as important economic losses to the region in which this condition is found. This study was designed to compare the levels of essential trace and toxic elements in scalp hair, blood, and urine samples of anemic children (n = 132) with age range 1–5 and 6–10 years of both genders. For a comparative study, 134 non-anemic age- and sex-matched children as control subjects, residing in the same city, were selected. The metals in the biological samples were measured by flame atomic absorption spectrophotometry/electrothermal atomic absorption spectrometry prior to microwave-assisted acid digestion. The proposed method was validated using certified reference samples of hair, blood, and urine. The results indicated significantly lower levels of iron, copper, and zinc in the biological samples as compared to the control children of both genders (p = 0.01–0.008). The mean values of lead and cadmium were significantly high in all three biological samples of anemic children as compared to non-anemic children of both age groups (p = 0.005–0.001). The ratios of essential metal to toxic metals in the biological samples of anemic children of both age groups were significantly lower than that of controls. Deficiency of essential trace metals and high level of toxic metals may play a role in the development of anemia in the subjects under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hall A, Miguel E (2001) Anemia in schoolchildren in eight countries in Africa and Asia. Public Health Nutr 4(3):749–756

    Article  PubMed  CAS  Google Scholar 

  2. Brabin BJ, Premji Z, Verhoeff F (2001) An analysis of anemia and child mortality. J Nutr 131(2S-2):636S–645S

    PubMed  CAS  Google Scholar 

  3. Lanzkowsky P (1995) Pediatric hematology and oncology, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  4. Haas JD, Brownlie TT (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131:676S–688S

    PubMed  CAS  Google Scholar 

  5. Grantham-McGregor S, Ani C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131:649S–666S

    PubMed  CAS  Google Scholar 

  6. Sherriff A, Emond A, Bell JC, Golding J (2001) Should infants be screened for anaemia? A prospective study investigating the relation between haemoglobin at 8, 12, and 18 months and development at 18 months. Arch Dis Child 84:480–485

    Article  PubMed  CAS  Google Scholar 

  7. Booth IW, Aukett MA, Booth W, Aukett MA (1997) Iron deficiency anaemia in infancy and early childhood. Arch Dis Child 76(6):549–554

    Article  PubMed  CAS  Google Scholar 

  8. Halterman JS, Kaczorowski JM, Aligne CA, Auinger P, Szilagyi PG (2001) Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107:1381–1386

    Article  PubMed  CAS  Google Scholar 

  9. Horton S, Ross J (2003) The economics of iron deficiency. Food Policy 28(1):51–75

    Article  Google Scholar 

  10. Afridi HI, Kazi TG, Kazi GH (2005) Evaluation of status of trace and toxic metals in scalp hair samples of normal and anemic human subjects. American Biot Lab 23(8):27

    CAS  Google Scholar 

  11. Castillo-Duran C, Garcia H, Venegas P (1994) Zinc supplementation increases growth velocity of male children and adolescents with short stature. Acta Paediatr 83:833

    Article  PubMed  CAS  Google Scholar 

  12. Singh S, Ravishanker R, Singhi P, Nath R (2003) Low plasma zinc and iron in pica. Indian J Pediatr 70(2):139–143

    Article  Google Scholar 

  13. Percival SS (1995) Neutropenia caused by copper deficiency. Nutr Rev 53:59–66

    Article  PubMed  CAS  Google Scholar 

  14. Tammura H, Hirose S, Watanave O (1994) Anemia and neutropenia due to copper deficiency in enternal nutrition. J Parenter Enteral Nutr 18:185–189

    Article  Google Scholar 

  15. Lukaski HC (1999) Chromium as a supplement. Annu Rev Nutr 19:279–302

    Article  PubMed  CAS  Google Scholar 

  16. Soylak M, Saraçoglu S, Tüzen M, Mendil D (2005) Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chem 92:649–652

    Article  CAS  Google Scholar 

  17. Mendil D, Unal OF, Tuzen M, Soylak M (2010) Determination of trace metals in different fish species and sediments from the River Yesilirmak in Tokat, Turkey. Food Chem Toxicol 48:1383–1392

    Article  PubMed  CAS  Google Scholar 

  18. Eden AN, Mir MA (1997) Iron deficiency in 1- to 3-year old children. A pediatric failure? Arch Pediatr Adolesc Med 151:986–988

    PubMed  CAS  Google Scholar 

  19. Federman DG, Kirsner RS, Federman GS (1997) Pica: are you hungry for the facts? Conn Med 61:207–209

    PubMed  CAS  Google Scholar 

  20. Park JD, Cherrington NJ, Klaassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68(2):288–294

    Article  PubMed  CAS  Google Scholar 

  21. Balajewicz AH, Pietrzik JJ, Schlegel-Zawadzka M, Piatkowska E, Zachwieja Z (2001) The influence of lead and cadmium environmental pollution on anthropometric health factors in children. Przegl Lek 58:315–324

    Google Scholar 

  22. Mahaffey KR, Annest JL (1986) Association of erythrocyte protoporphyrin with blood lead level and iron status in the second national health and nutrition examination survey, 1976–1980. Environ Res 41:327–338

    Article  PubMed  CAS  Google Scholar 

  23. Hammad TA, Sexton M, Langenberg P (1999) Relationship between blood lead and dietary iron intake in preschool children. A cross-section study. Ann Epidemiol 6(1):30–33

    Article  Google Scholar 

  24. Soylak M, Karatepe AU, Elçi L, Dogan M (2003) Column preconcentration/separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using amberlite XAD-1180. Turk J Chem 27:235–242

    CAS  Google Scholar 

  25. Afridi HI, Kazi TG, Kazi N et al (2009) Determination of copper and iron in biological samples of viral hepatitis (A–E) female patients. Biol Trace Elem Res 129:78–87

    Article  PubMed  CAS  Google Scholar 

  26. Soylak M, Elci L, Dogan M (1999) Flame atomic absorption spectrometric determination of cadmium. Cobalt, copper, lead and nickel in chemical grade potassium salts after an enrichment and separation procedure. J Trace Microprobe Tech 17:149–156

    CAS  Google Scholar 

  27. Kazi TG, Memon AR, Afridi HI et al (2008) Determination of cadmium in whole blood and scalp hair samples of Pakistani male lung cancer patients by electro thermal atomic absorption spectrometer. Sci Total Environ 389:270–276

    Article  PubMed  CAS  Google Scholar 

  28. Kazi TG, Jalbani N, Baig JA et al (2009) Determination of toxic elements in infant formulae by using electrothermal atomic absorption spectrometer. Food Chem Toxicol 47:1425–1429

    Article  PubMed  CAS  Google Scholar 

  29. Afridi HI, Kazi TG, Kazi N et al (2009) Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet 280:415–423

    Article  PubMed  CAS  Google Scholar 

  30. Williams JR (2008) The Declaration of Helsinki and public health. Bull World Health Organ 86:650–651

    Article  PubMed  Google Scholar 

  31. Afridi HI, Kazi TG, Kazi GH et al (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectrosc Lett 39:203–214

    Article  CAS  Google Scholar 

  32. Kazi TG, Afridi HI, Kazi GH et al (2006) Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 369(1):52–60

    Article  PubMed  CAS  Google Scholar 

  33. Kazi TG, Afridi HI, Kazi N et al (2008) Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clin Chim Acta 389(1–2):114–119

    Article  PubMed  CAS  Google Scholar 

  34. Gomber S, Kumar S, Rusia U, Gupta P, Agarwal KN, Sharma S (1998) Prevalence and etiology of nutritional anaemia in early childhood in an urban slum. Indian J Med Res 107:269

    PubMed  CAS  Google Scholar 

  35. Oski FA (1993) Iron deficiency in infancy and childhood. N Engl J Med 329(3):190–193

    Article  PubMed  CAS  Google Scholar 

  36. Hallberg L, Brune M, Rossander L (1989) Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am J Clin Nutr 49:140–144

    PubMed  CAS  Google Scholar 

  37. Lozoff B, Jimenez E, Wolf W (1991) Long-term developmental outcome of infants with iron deficiency. N Engl J Med 325:687–693

    Article  PubMed  CAS  Google Scholar 

  38. Sondstrom B (1990) Effect of inositol hexaphosphate on retention of zinc and calcium from the human colon. Eur J Clin Nutr 44:705–708

    Google Scholar 

  39. Brown KH, Wuehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull 22:113–125

    Google Scholar 

  40. Isbir T (1997) Mean zinc contents of serum, hair, erythrocytes, and urine of 32 children. Trace Elem Electrolytes 14(2):87–90

    CAS  Google Scholar 

  41. L’Abbe MR, Friel JK (1992) Copper status of very low birth weight infants during the first 12 months of infancy. Pediatr Res 32:183–188

    PubMed  Google Scholar 

  42. Larsson S, Kallebring B, Wittung P, Malmstrom BG (1995) The Cu A center of cytochrome-c oxidase: electronic structure and spectra of models compared to the properties of Cu A domains. Proc Natl Acad Sci 92:7167–7171

    Article  PubMed  CAS  Google Scholar 

  43. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 57(9):386–398

    Article  PubMed  CAS  Google Scholar 

  44. Gacheru N, Trackman PC, Shah MA (1990) Structural and catalytic properties of copper in lysyl oxidase. J Biol Chem 265(31):19022–19027

    PubMed  CAS  Google Scholar 

  45. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S–811S

    PubMed  CAS  Google Scholar 

  46. Abdelrahim II, Mahgoub HM, Mohamed AA et al (2009) Anaemia, folate, zinc and copper deficiencies among adolescent schoolgirls in Eastern Sudan. Biol Trace Elem Res 132:60–66

    Article  PubMed  CAS  Google Scholar 

  47. Jeejeebhoy KN (1999) Chromium and parenteral nutrition. J Trace Elem Exp Med 12(2):85–89

    Article  CAS  Google Scholar 

  48. Barnes B, Bradley SG (1994) Planning for a healthy baby: essential reading for all future parents. Vermillion, London

    Google Scholar 

  49. Payne DL, Adeleye B, Hunt DJ, Stoecker BJ (1996) Uptake and retention in suckling rats of chromium fed with human milk or infant formulas. Biol Trace Elem Res 53:1–6

    Article  PubMed  CAS  Google Scholar 

  50. WHO (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  51. Nielson F (1996) Other trace elements. In: Ziegler EE, Filer LJ (eds) Present knowledge in nutrition. ILSI, Washington, pp 353–377

    Google Scholar 

  52. Arnich N, Cunat L (2004) Comparative in situ study of the intestinal absorption of aluminum, manganese, nickel, and lead in rats. Biol Trace Elem Res 99(1–3):157–171

    Article  PubMed  CAS  Google Scholar 

  53. Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    Article  PubMed  CAS  Google Scholar 

  54. Park JD, Cherrington NJ, Klassen CD (2002) Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol Sci 68:288–294

    Article  PubMed  CAS  Google Scholar 

  55. Schaefer SG, Schwegler U, Schuemann K (1990) Retention of cadmium in cadmium-naive normal and iron-deficient rats as well as in cadmium-induced iron-deficient animals. Ecotoxicol Environ Saf 20:71–81

    Article  CAS  Google Scholar 

  56. Tandon SK, Khandelwal S, Jain VK, Matthur N (1994) Influence of dietary iron deficiency on nickel, lead and cadmium intoxication. Sci Total Environ 148:167–173

    Article  PubMed  CAS  Google Scholar 

  57. Ohta H, Cherian MG (1995) The influence of nutritional deficiencies on gastrointestinal uptake of cadmium and cadmium metalothionein in rats. Toxicology 97:71–80

    Article  PubMed  CAS  Google Scholar 

  58. Iturri S, Nunez MT (1998) Effect of copper, cadmium, mercury, manganese and lead on Fe2+ and Fe3+ absorption in perfused mouse intestine. Digestion 59:671–675

    Article  PubMed  CAS  Google Scholar 

  59. Sargent JD, Stuket TA, Dalton MA, Freeman JL, Brown MJ (1996) Iron deficiency in Massachusetts communities: socioeconomic and demographic risk factors among children. Am J Public Health 86:544–550

    Article  PubMed  CAS  Google Scholar 

  60. Ruff HA, Markowitz ME, Bijur PE, Rosen JF (1996) Relationships among blood lead levels, iron deficiency, and cognitive development in two-year-old children. Environ Health Perspect 104:180–185

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Higher Education Commission, Islamabad, Pakistan for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Gul Kazi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-010-8922-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, F., Kazi, T.G., Afridi, H.I. et al. Evaluation of Status of Trace and Toxic Metals in Biological Samples (Scalp Hair, Blood, and Urine) of Normal and Anemic Children of Two Age Groups. Biol Trace Elem Res 141, 131–149 (2011). https://doi.org/10.1007/s12011-010-8736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8736-8

Keywords

Navigation