Skip to main content
Log in

Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ischemia-reperfusion (I/R) injury is a serious condition which is associated with myocardial infarction, stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease, and sleep apnea and can lead to high morbidity and mortality. Salts of zinc (Zn) are commonly used by humans and have protective effects against gastric, renal, hepatic, muscle, myocardial, or neuronal ischemic injury. The present review evaluates molecular mechanisms underlying the protective effects of Zn supplement against I/R injury. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, and Scientific Information Database from 1991 to 2019. Zn supplementation increased the decreased parameters including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH), metallothionein (MT), protein sulfhydryl (P-SH), and nuclear factor-erythroid 2-related factor-2 (Nrf2) expression and decreased the increased elements such as endoplasmic reticulum (ER) stress, mitochondrial permeability transition pore (mPTP) opening, malondialdehyde (MDA), serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and microRNAs-(122 and 34a), apoptotic factors, and histopathological changes. Zn also increases phosphatidylinositol 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) phosphorylation and preserves protein kinase C isoforms. It is suggested that Zn can be administered before elective surgeries for prevention of side effects of I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akbari G, Mard SA, Veisi A (2018) A Comprehensive review on regulatory effects of crocin on ischemia/reperfusion injury in multiple organs. Biomed Pharmacother 99:664–670. https://doi.org/10.1016/j.biopha.2018.01.113

  2. Ruiz-Meana M, García-Dorado D (2009) Pathophysiology of ischemia-reperfusion injury: new therapeutic options for acute myocardial infarction. Rev Esp Cardiol 62(2):199–209

    Google Scholar 

  3. Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94(6):1133–1138

    CAS  Google Scholar 

  4. Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J renal. Inj Prev 4(2):20–27. https://doi.org/10.12861/jrip.2015.06

    Article  CAS  Google Scholar 

  5. Zhang S, Zhang Y, Peng N, Zhang H, Yao J, Li Z, Liu L (2014) Pharmacokinetics and biodistribution of zinc-enriched yeast in rats. ScientificWorld Journal 2014:217142–217144. https://doi.org/10.1155/2014/217142

    Article  CAS  Google Scholar 

  6. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14(3–4):331–341

    CAS  Google Scholar 

  7. Baltaci AK, Yuce K, Mogulkoc R (2018) Zinc metabolism and metallothioneins. Biol Trace Elem Res 183(1):22–31. https://doi.org/10.1007/s12011-017-1119-7

    Article  CAS  Google Scholar 

  8. Baltaci AK, Yuce K (2018) Zinc transporter proteins. Neurochem Res 43(3):517–530. https://doi.org/10.1007/s11064-017-2454-y

    Article  CAS  Google Scholar 

  9. Zhong W, Zhao Y, Sun X, Song Z, McClain CJ, Zhou Z (2013) Dietary zinc deficiency exaggerates ethanol-induced liver injury in mice: involvement of intrahepatic and extrahepatic factors. PLoS One 8(10):e76522. https://doi.org/10.1371/journal.pone.0076522

    Article  CAS  Google Scholar 

  10. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    CAS  Google Scholar 

  11. Prasad AS (2014) Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol 28(4):364–371. https://doi.org/10.1016/j.jtemb.2014.07.019

    Article  CAS  Google Scholar 

  12. Baltaci AK, Mogulkoc R, Baltaci SB (2019) The role of zinc in the endocrine system. Pak J Pharm Sci 32(1):231–239

    CAS  Google Scholar 

  13. Zhou Z, Sun X, Lambert JC, Saari JT, Kang YJ (2002) Metallothionein-independent zinc protection from alcoholic liver injury. Am J Pathol 160(6):2267–2274

    CAS  Google Scholar 

  14. Jemai H, Messaoudi I, Chaouch A, Kerkeni A (2007) Protective effect of zinc supplementation on blood antioxidant defense system in rats exposed to cadmium. J Trace Elem Med Biol 21(4):269–273

    CAS  Google Scholar 

  15. Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37(8):1182–1190

    CAS  Google Scholar 

  16. Krezel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463(2):188–200

    CAS  Google Scholar 

  17. Ozturk A, Baltaci AK, Mogulkoc R, Oztekin E, Sivrikaya A, Kurtoglu E, Kul A (2003) Effects of zinc deficiency and supplementation on malondialdehyde and glutathione levels in blood and tissues of rats performing swimming exercise. Biol Trace Elem Res 94(2):157–166

    CAS  Google Scholar 

  18. Nakamura H, Sekiguchi A, Ogawa Y, Kawamura T, Akai R, Iwawaki T, Makiguchi T, Yokoo S, Ishikawa O, Motegi SI (2019) Zinc deficiency exacerbates pressure ulcers by increasing oxidative stress and ATP in the skin. J Dermatol Sci pii S0923-1811(19):30197–30195. https://doi.org/10.1016/j.jdermsci.2019.07.004

    Article  CAS  Google Scholar 

  19. Zhou Z, Wang L, Song Z, Saari JT, McClain CJ, Kang YJ (2005) Zinc supplementation prevents alcoholic liver injury in mice through attenuation of oxidative stress. Am J Pathol 166(6):1681–1690

    CAS  Google Scholar 

  20. Goel A, Dani V, Dhawan DK (2005) Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem Biol Interact 156(2–3):131–140

    CAS  Google Scholar 

  21. Arda-Pirincci P, Bolkent S, Yanardag R (2006) The role of zinc sulfate and metallothionein in protection against ethanol-induced gastric damage in rats. Dig Dis Sci 51(12):2353–2360

    CAS  Google Scholar 

  22. Oksuz H, Bulbuloglu E, Senoglu N, Ciralik H, Yuzbasioglu MF, Kilinc M, Dogan Z, Goksu M, Yildiz H, Ozkan OV, Atli Y (2009) Re-protective effects of pre-and post-laparoscopy conditioning, zinc, pentoxifylline, and N-acetylcysteine in an animal model of laparoscopy-induced ischemia/reperfusion injury of the kidney. Ren Fail 31(4):297–302. https://doi.org/10.1080/08860220902780044

    Article  CAS  Google Scholar 

  23. Ogawa T, Mimura Y (1999) Antioxidant effect of zinc on acute renal failure induced by ischemia-reperfusion injury in rats. Am J Nephrol 19(5):609–614

    CAS  Google Scholar 

  24. Hadj Abdallah N, Baulies A, Bouhlel A, Bejaoui M, Zaouali MA, Ben Mimouna S, Messaoudi I, Fernandez-Checa JC, García Ruiz C, Ben Abdennebi H (2018) Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J Cell Physiol 233(11):8677–8690. https://doi.org/10.1002/jcp.26747

    Article  CAS  Google Scholar 

  25. Yilmaz M, Mogulkoc R, Baltaci AK (2015) Effects of three-week zinc and melatonin supplementation on the oxidant-antioxidant system in experimental renal ischemia-reperfusion in rats. Acta Clin Croat 54(4):395–401

    Google Scholar 

  26. Barekat F, Talebi A, Nematbakhsh M (2018) The protective roles of zinc and estradiol in renal ischemia/reperfusion injury in ovariectomized rats. J Nephropathol 7(2):88–92. https://doi.org/10.15171/jnp.2018.21

    Article  Google Scholar 

  27. O’Kane D, Gibson L, May CN, du Plessis J, Shulkes A, Baldwin GS, Bolton D, Ischia J, Patel O (2018) Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model. Biometals 31(5):821–834. https://doi.org/10.1007/s10534-018-0125-3

    Article  CAS  Google Scholar 

  28. Mard SA, Akbari G, Dianat M, Mansouri E (2017) Protective effects of crocin and zinc sulfate on hepatic ischemia-reperfusion injury in rats: a comparative experimental model study. Biomed Pharmacother 96:48–55. https://doi.org/10.1016/j.biopha.2017.09.123

    Article  CAS  Google Scholar 

  29. Mard SA, Akbari G, Dianat M, Mansouri E (2019) The effect of zinc sulfate on miR-122, miR-34a, atioxidants, biochemical and histopathological parameters following hepatic ischemia/reperfusion injury in rats. Biol Trace Elem Res 188(2):434–440. https://doi.org/10.1007/s12011-018-1425-8

    Article  CAS  Google Scholar 

  30. Yoshikawa T, Naito Y, Tanigawa T, Yoneta T, Yasuda M, Ueda S, Oyamada H, Kondo M (1991) Effect of zinc-carnosine chelate compound (Z-103), a novel antioxidant, on acute gastric mucosal injury induced by ischemia-reperfusion in rats. Free Radic Res Commun 14(4):289–296

    CAS  Google Scholar 

  31. Bulbuloglu E, Yildiz H, Senoglu N, Coskuner I, Yuzbasioglu MF, Kilinc M, Dogan Z, Deniz C, Oksuz H, Kantarçeken B, Atli Y (2011) Protective effects of zinc, pentoxifylline, and N-acetylcysteine in an animal model of laparoscopy-induced ischemia/reperfusion injury of the small intestine. J Laparoendosc Adv Surg Tech A 21(10):947–951. https://doi.org/10.1089/lap.2011.0194

    Article  Google Scholar 

  32. Atahan E, Ergun Y, Belge Kurutas E, Cetinus E, Guney Ergun U (2007) Ischemia-reperfusion ijunry in rat skeletal muscle is attenuated by zinc aspartate. J Surg Res 137(1):109–116

    CAS  Google Scholar 

  33. Atahan E, Ergün Y, Kurutaş EB, Alici T (2010) Protective effect of zinc aspartate on long-term ischemia–reperfusion injury in rat skeletal muscle. Biol Trace Elem Res 137(2):206–215. https://doi.org/10.1007/s12011-009-8568-6

    Article  CAS  Google Scholar 

  34. Oral A, Halici Z, Bayir Y, Topcu A, Un H, Bilgin AO, Atmaca HT (2017) Effects of oral zinc administration on long term ipsilateral and contralateral testes damage after experimental testis ischaemia–reperfusion. Andrologia 49(6):e12673. https://doi.org/10.1111/and.12673

    Article  CAS  Google Scholar 

  35. Ozkan KU, Boran C, Kilinç M, Garipardiç M, Kurutaş EB (2004) The effect of zinc aspartate pretreatment on ischemia-reperfusion injury and early changes of blood and tissue antioxidant enzyme activities after unilateral testicular torsion-detorsion. J Pediatr Surg 39(1):91–95

    CAS  Google Scholar 

  36. Semercioz A, Baltaci AK, Mogulkoc R, Avunduk MC (2017) Effect of zinc and melatonin on oxidative stress and serum inhibin-B levels in a rat testicular torsion–detorsion model. Biochem Genet 55(5–6):395–409. https://doi.org/10.1007/s10528-017-9826-5

    Article  CAS  Google Scholar 

  37. Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 321(2):517–525

    CAS  Google Scholar 

  38. Zhang Y, Xing F, Zheng H, Xi J, Cui X, Xu Z (2013) Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury. Free Radic Res 47(6–7):517–525. https://doi.org/10.3109/10715762.2013.796044

    Article  CAS  Google Scholar 

  39. Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z (2009) The molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 297(2):569–575. https://doi.org/10.1152/ajpheart.00293

    Article  Google Scholar 

  40. Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3β. Am J Physiol Heart Circ Physiol 295(3):1227–1233. https://doi.org/10.1152/ajpheart.00610.2008

    Article  CAS  Google Scholar 

  41. Ozyıldırım S, Baltaci AK, Sahna E (2017) Mogulkoc R Effects of chronic and acute zinc supplementation on myocardial ischemia-reperfusion injury in rats. Biol Trace Elem Res 178(1):64–70. https://doi.org/10.1007/s12011-016-0903-0

    Article  CAS  Google Scholar 

  42. Rao K, Sethi K, Ischia J, Gibson L, Galea L, Xiao L, Yim M, Chang M, Papa N, Bolton D, Shulkes A, Baldwin GS, Patel O (2017) Protective effect of zinc preconditioning against renal ischemia reperfusion injury is dose dependent. PLoS One 12(7):e0180028. https://doi.org/10.1371/journal.pone.0180028

    Article  CAS  Google Scholar 

  43. Moslemi F, Talebi A, Nematbakhsh M (2019) Protective effect of zinc supplementation on renal ischemia/reperfusion injury in rat: gender-related difference. Int J Prev Med 10:68. https://doi.org/10.4103/ijpvm.IJPVM_279_17

    Article  Google Scholar 

  44. Celer M, Mogulkoc R, Baltaci AK, Dasdelen D (2018) The effects of zinc and melatonin on muscle ischaemi-reperfusion injury in rat. Cell Mol Biol 64(3):1–4. https://doi.org/10.14715/cmb/2018.64.3.1

    Article  Google Scholar 

  45. Gueler F, Gwinner W, Schwarz A, Haller H (2004) Long-term effects of acute ischemia and reperfusion injury. Kidney Int 66(2):523–527

    Google Scholar 

  46. Kehrer JP, Klotz LO (2015) Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Crit Rev Toxicol 45(9):765–798. https://doi.org/10.3109/10408444.2015.1074159

    Article  CAS  Google Scholar 

  47. Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D, Farsetti A, D’Orazi G (2010) Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One 5(12):e15048. https://doi.org/10.1371/journal.pone.0015048

    Article  CAS  Google Scholar 

  48. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  Google Scholar 

  49. Schanz M, Schaaf L, Dippon J, Biegger D, Fritz P, Alscher MD, Kimmel M (2017) Renal effects of metallothionein induction by zinc in vitro and in vivo. BMC Nephrol 18(1):91. https://doi.org/10.1186/s12882-017-0503-z

    Article  CAS  Google Scholar 

  50. Hadj Ayed Tka K, Mahfoudh Boussaid A, Zaouali MA, Kammoun R, Bejaoui M, Ghoul Mazgar S, Rosello Catafau J, Ben Abdennebi H (2015) Melatonin modulates endoplasmic reticulum stress and Akt/GSK3-beta signaling pathway in a rat model of renal warm ischemia reperfusion. Anal Cell Pathol (Amst) 2015:635172–635110. https://doi.org/10.1155/2015/635172

    Article  CAS  Google Scholar 

  51. Saftig P, Eskelinen EL (2008) Live longer with LAMP-2. Nat Med 14(9):909–910. https://doi.org/10.1038/nm0908-909

    Article  CAS  Google Scholar 

  52. Kelly KJ, Plotkin Z, Dagher PC (2001) Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. T J Clin Invest 108(9):1291–1298

    CAS  Google Scholar 

  53. Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, Singh T, Cardozo LJ (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91(6):1634–1641. https://doi.org/10.3945/ajcn.2009.28836

    Article  CAS  Google Scholar 

  54. Zhang W, Zhang J, Xu M, Zhang Y (2007) Effect of oxytocin on gastric ischemia-reperfusion injury in rats. Front Med China 1(4):433–437. https://doi.org/10.1007/s11684-007-0085-4

    Article  Google Scholar 

  55. Mard SA, Azad SM, Ahangarpoor A (2016) Protective effect of crocin on gastric mucosal lesions induced by ischemia-reperfusion injury in rats. Iran J Pharm Res 15(Suppl):93–99

    Google Scholar 

  56. Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M, Ahmadi M, Shafiee S (2013) Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 16(3):206–210. https://doi.org/10.1089/jmf.2012.2407

    Article  CAS  Google Scholar 

  57. Abd Abd-Elbaset M, Arafa ES, El Sherbiny GA, Abdel-Bakky MS, Elgendy AN (2015) Quercetin modulates iNOS, eNOS and NOSTRIN expressions and attenuates oxidative stress in warm hepatic ischemia-reperfusion injury in rats. Beni-Suef Univ J Basic Appl Sci 4(3):246–255

    Google Scholar 

  58. Bernardi C, Soffientini U, Piacente F, Tonetti MG (2013) Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS One 8(10):e76540. https://doi.org/10.1371/journal.pone.0076540

    Article  CAS  Google Scholar 

  59. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  CAS  Google Scholar 

  60. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and maydownregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1(2):106–113

    CAS  Google Scholar 

  61. Siaj R, Sauer V, Stöppeler S, Gerß J, Spiegel HU, Köhler G, Zibert A, Schmidt HH (2012) Longitudinal analysis of serum miR-122 in a rat model of Wilson’s disease. Hepatol Int 6(4):770–777. https://doi.org/10.1007/s12072-012-9348-5

    Article  Google Scholar 

  62. Van Caster P, Brandenburger T, Strahl T, Metzger S, Bauer I, Pannen B, Braun S (2015) Circulating microRNA-122,-21 and-223 as potential markers of liver injury following warm ischaemia and reperfusion in rats. Mol Med Rep 12(2):3146–3150. https://doi.org/10.3892/mmr.2015.3742

    Article  CAS  Google Scholar 

  63. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L (2011) Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6(8):e23937. https://doi.org/10.1371/journal.pone.0023937

    Article  CAS  Google Scholar 

  64. Zeng T, Zhang CL, Song FY, Zhao XL, Yu LH, Zhu ZP, Xie KQ (2013) The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress. Biochim Biophys Acta 1830(10):4848–4859. https://doi.org/10.1016/j.bbagen.2013.06.028

    Article  CAS  Google Scholar 

  65. McDaniel K, Herrera L, Zhou T, Francis H, Han Y, Levine P, Lin E, Glaser S, Alpini G, Meng F (2014) The functional role of micro RNA s in alcoholic liver injury. J Cell Mol Med 18(2):197–207

    CAS  Google Scholar 

  66. Sun Y, Yang J, Wang LZ, Sun LR, Dong Q (2014) Crocin attenuates cisplatin-induced liver injury in the mice. Hum Exp Toxicol 33(8):855–862. https://doi.org/10.1177/0960327113511475

    Article  CAS  Google Scholar 

  67. Yabe Y, Kobayashi N, Nishihashi T, Takahashi R, Nishikawa M, Takakura Y, Hashida M (2001) Prevention of neutrophil-mediated hepatic ischemia/reperfusion injury by superoxide dismutase and catalase derivatives. J Pharmacol Exp Ther 298(3):894–899

    CAS  Google Scholar 

  68. Wei Y, Gong J, Yoshida T, Eberhart CG, Xu Z, Kombairaju P, Sporn MB, Handa JT, Duh EJ (2011) Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia–reperfusion injury. Free Radic Biol Med 51(1):216–224. https://doi.org/10.1016/j.freeradbiomed.2011.04.026

    Article  CAS  Google Scholar 

  69. Klaassen CD, Reisman SA (2010) Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol 244(1):57–65. https://doi.org/10.1016/j.taap.2010.01.013

    Article  CAS  Google Scholar 

  70. Xu S, Weer Achayaphorn J, Cai SY, Soroka CJ, Boyer JL (2010) Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am J Physiol Gastrointest Liver Physiol 299(1):126–135. https://doi.org/10.1152/ajpgi.00522.2010

    Article  CAS  Google Scholar 

  71. Tang W, Jiang YF, Ponnusamy M1, Diallo M (2014) Role of Nrf2 in chronic liver disease. World J Gastroenterol 20(36):13079–13087. doi: https://doi.org/10.3748/wjg.v20.i36.13079

  72. Angulo PN (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231

    CAS  Google Scholar 

  73. Bai L, Zhu WG (2006) p53: structure, function and therapeutic applications. J Cancer Mol 2(4):141–153

    CAS  Google Scholar 

  74. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604

    CAS  Google Scholar 

  75. Akbari G, Mard SA, Dianat M, Mansouri E (2017) The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxidative Med Cell Longev 2017:1702967–1702911. https://doi.org/10.1155/2017/1702967

    Article  CAS  Google Scholar 

  76. Unsal MA, Imamoglu M, Kadioglu M, Aydin S, Ulku C, Kesim M, Alver A, Kalyoncu NI, Yaris E, Bozkaya H (2006) The acute alterations in biochemistry, morphology, and contractility of rat-isolated terminal ileum via increased intra-abdominal pressure. Pharmacol Res 53(2):135–141

    CAS  Google Scholar 

  77. Schietroma M, Carlei F, Cappelli S, Amicucci G (2006) Intestinal permeability and systemic endotoxemia after laparotomic or laparoscopic cholecystectomy. Ann Surg 243(3):359–363

    Google Scholar 

  78. Yilmaz S, Polat C, Kahraman A, Koken T, Arikan Y, Dilek ON, Gökçe O (2004) The comparison of the oxidative stress effects of different gases and intra-abdominal pressures in an experimental rat model. J Laparoendosc Adv Surg Tech A 14(3):165–168

    Google Scholar 

  79. Ishizaki Y, Bandai Y, Shimomura K, Abe H, Ohtomo Y, Idezuki Y (1994) Changes in splanchnic blood flow and cardiovascular effects following peritoneal insufflation of carbon dioxide. Surg Endosc 7(5):420–423

    Google Scholar 

  80. Blaisdell FW (2002) The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc Surg 10(6):620–630

    Google Scholar 

  81. Ascher E, Hanson JN, Cheng W, Hingorani A, Scheinman M (2001) Glycine preserves function and decreases necrosis in skeletal muscle undergoing ischemia and reperfusion injury. Surgery 129(2):231–235

    CAS  Google Scholar 

  82. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130(5S Suppl):1447S–1454S. https://doi.org/10.1093/jn/130.5.1447S

    Article  CAS  Google Scholar 

  83. Rajesh M, Sulochana KN, Punitham R, Biswas J, Lakshmi S, Ramakrishnan S (2003) Involvement of oxidative and nitrosative stress in promoting retinal vasculitis in patients with Eales’ disease. Clin Biochem 36(5):377–385

    CAS  Google Scholar 

  84. Filho DW, Torres MA, Bordin AL, Crezcynski-Pasa TB, Boveris A (2004) Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia–reperfusion injury. Mol Asp Med 25(1–2):199–210

    Google Scholar 

  85. Ribeiro CT, Milhomem R, De Souza DB, Costa WS, Sampaio FJ, Pereira-Sampaio MA (2014) Effect of antioxidants on outcome of testicular torsion in rats of different ages. J Urol 191(5 Suppl):1578–1584. https://doi.org/10.1016/j.juro.2013.09.066

    Article  CAS  Google Scholar 

  86. Un H, Bayir Y, Halici Z, Akpinar E, Karakus E, Oral A, Ziypak T, Selli J (2015) The effects of RAAS inhibition in rate limiting step by aliskiren on testicular torsion injury in rats. J Urol 194(3):828–833. https://doi.org/10.1016/j.juro.2015.03.117

    Article  CAS  Google Scholar 

  87. Xu Z, Zhou J (2013) Zinc and myocardial ischemia/reperfusion injury. Biometals 26(6):863–878. https://doi.org/10.1007/s10534-013-9671-x

    Article  CAS  Google Scholar 

  88. Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93(4):292–301

    CAS  Google Scholar 

  89. Di Lisa F, Bernardi P (2006) Mitochondria and ischemia–reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70(2):191–199

    Google Scholar 

  90. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98

    CAS  Google Scholar 

  91. Jang Y, Wang H, Xi J, Mueller RA, Norfleet EA, Xu Z (2007) NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 75(2):426–433

    CAS  Google Scholar 

  92. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci U S A 100(10):6157–6162

    CAS  Google Scholar 

  93. Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz LO (2007) Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 463(2):175–1782

    CAS  Google Scholar 

  94. An WL, Pei JJ, Nishimura T, Winblad B, Cowburn RF (2005) Zinc-induced anti-apoptotic effects in SH-SY5Y neuroblastoma cells via the extracellular signal-regulated kinase 1/2. Brain Res Mol Brain Res 135(1–2):40–47

    CAS  Google Scholar 

  95. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102

    CAS  Google Scholar 

  96. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2(10):769–776

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghaidafeh Akbari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res 196, 1–9 (2020). https://doi.org/10.1007/s12011-019-01892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01892-3

Keywords

Navigation