Skip to main content
Log in

Effects of Organic Copper on Growth Performance and Oxidative Stress in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) has been used as a feed additive for many years. However, high Cu amounts can cause oxidative stress and adversely affect animal performance. Such negative effects may depend on the amounts and forms of Cu. In the present study, the effects of inorganic Cu (CuSO4) and organic Cu (chelate-Cu) present in mice feed on daily growth rate and Cu deposition in the liver, kidneys, spleen, brain, and serum were assessed in addition to the oxidative stress levels in the liver and brain. Organic Cu at a concentration of 15 mg/kg significantly enhanced daily growth rate in mice, whereas Cu deposition in the livers was significantly lower than that in the inorganic Cu group. Glutathione peroxidase activity in the liver of the mice fed with organic Cu significantly improved, whereas malondialdehyde levels in the brain and liver were significantly lower than that in the inorganic Cu group. The different effects of organic Cu and inorganic Cu provide key evidence supporting the use of organic Cu in animal feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bunch RJ, Speer VC, Hays VW, Hawbaker JH, Catron DV (1961) Effects of copper sulfate, copper oxide and chlortetracycline on baby pig performance. J Anim Sci 20:723–726. https://doi.org/10.2527/jas1961.204723x

    Article  CAS  Google Scholar 

  2. Bunch RJ, Mccall JT, Speer VC, Hays VW (1965) Copper supplementation for weanling pigs. J Anim Sci 24:995–1000. https://doi.org/10.2527/jas1965.244995x

    Article  Google Scholar 

  3. Stahly TS, Cromwell GL, Monegue HJ (1980) Effects of the dietary inclusion of copper and(or) antibiotics on the performance of weanling pigs. J Anim Sci 51:1347–1351. https://doi.org/10.1080/00071668008416704

    Article  CAS  PubMed  Google Scholar 

  4. Apgar GA, Kornegay ET (1996) Mineral balance of finishing pigs fed copper sulfate or a copper-lysine complex at growth-stimulating levels. J Anim Sci 74:1594–1600. https://doi.org/10.2527/1996.7471594x

    Article  CAS  PubMed  Google Scholar 

  5. Read ES, Barrows FT, Gaylord TG, Paterson J, Petersen MK, Sealey WM (2014) Investigation of the effects of dietary protein source on copper and zinc bioavailability in fishmeal and plant-based diets for rainbow trout. Aquaculture 432:97–105. https://doi.org/10.1016/j.aquaculture.2014.04.029

    Article  CAS  Google Scholar 

  6. Ashmead HD, Samford RA, Ashmead SD (2008) Feeding amino acid chelated copper and zinc to reduce mineral pollution from swine manure. Int J Appl Res Vet Med 6:31–37

    Google Scholar 

  7. Du Z, Hemken RW, Jackson JA, Trammell DS (1996) Utilization of copper in copper proteinate, copper lysine, and cupric sulfate using the rat as an experimental model. J Anim Sci 74:1657–1663

    Article  CAS  Google Scholar 

  8. Mondal MK, Das TK, Biswas P, Samanta CC, Bairagi B (2007) Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Anim Feed Sci Technol 139:212–233. https://doi.org/10.1016/j.anifeedsci.2007.01.014

    Article  CAS  Google Scholar 

  9. Tomaszewska E, Dobrowolski P, Kwiecień M, Winiarska-Mieczan A, Tomczyk A, Muszyński S (2017) The influence of the dietary Cu-glycine complex on the histomorphology of cancellous bone, articular cartilage, and growth plate as well as bone mechanical and geometric parameters is dose dependent. Biol Trace Elem Res 178:54–63. https://doi.org/10.1007/s12011-016-0894-x

    Article  CAS  PubMed  Google Scholar 

  10. Biswas MKMP (2007) Different sources and levels of copper supplementation on performance and nutrient utilization of castrated Black Bengal (Capra hircus) kids diet. Asian Australas J Anim Sci 20:1067–1075. https://doi.org/10.5713/ajas.2007.1067

    Article  Google Scholar 

  11. Lebela A, Matteb JJ, Guaya F (2014) Effect of mineral source and mannan oligosaccharide supplements on zinc and copper digestibility in growing pigs. Arch Anim Nutr 68:370–384. https://doi.org/10.1080/1745039X.2014.954357

    Article  CAS  Google Scholar 

  12. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163. https://doi.org/10.1016/s0300-483x(03)00159-8

    Article  CAS  PubMed  Google Scholar 

  14. Giampietro R, Spinelli F, Contino M, Colabufo NA (2018) The pivotal role of copper in neurodegeneration: a new strategy for the therapy of neurodegenerative disorders. Mol Pharm 15:808–820. https://doi.org/10.1021/acs.molpharmaceut.7b00841

    Article  CAS  PubMed  Google Scholar 

  15. Fazzio LE, Rosa DE, Picco SJ, Mattioli GA (2017) Assessment of Cu-Zn EDTA parenteral toxicity in calves. Biol Trace Elem Res 179:1–5. https://doi.org/10.1007/s12011-017-0965-7

    Article  CAS  Google Scholar 

  16. Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127:45–52. https://doi.org/10.1007/s12011-008-8219-3

    Article  CAS  PubMed  Google Scholar 

  17. Alexandrova A, Petrov L, Georgieva A, Kessiova M, Tzvetanova E, Kirkova M, Kukan M (2008) Effect of copper intoxication on rat liver proteasome activity: relationship with oxidative stress. J Biochem Mol Toxicol 22:354–362. https://doi.org/10.1002/jbt.20248

    Article  CAS  PubMed  Google Scholar 

  18. Bopp SK, Abicht HK (2008) Copper-induced oxidative stress in rainbow trout gill cells. Aquat Toxicol 86:197–204. https://doi.org/10.1016/j.aquatox.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  19. Gaetke LM, Chowjohnson HS, Chow CK (2014) Copper: toxicological relevance and mechanisms. Arch Toxicol 88:1929–1938. https://doi.org/10.1007/s00204-014-1355-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nirmalan T, Mondal BC, Tiwari DP, Kumar A (2011) Effect of dietary supplementation of organic and inorganic copper on growth and nutrient utilization in crossbred female calves. Indian J Anim Sci 81:1044–1048. https://doi.org/10.20546/ijcmas.2018.705.093

    Article  CAS  Google Scholar 

  21. Yigit AA, Cinar M, Yildirim E (2012) The effects of levamisole on oxidative stress induced by copper intoxication in broilers. N Z Vet J 60:273–277. https://doi.org/10.1080/00480169.2012.680190

    Article  CAS  PubMed  Google Scholar 

  22. Kuo YM, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 98(12):6836–6841. https://doi.org/10.1073/pnas.111057298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR (2006) Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 136(1):21–26. https://doi.org/10.1093/jn/136.1.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao S, Yin TJ, Xu BB, Ma Y, Hu M (2014) Amino acid facilitates absorption of copper in the Caco-2 cell culture model. Life Sci 109:50–56. https://doi.org/10.1016/j.lfs.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  25. Wapnir RA (1998) Copper absorption and bioavailability. Am J Clin Nutr 67:1054S–1060S. https://doi.org/10.1093/ajcn/67.5.1054S

    Article  CAS  PubMed  Google Scholar 

  26. Ozkul H, Kirkpinar F, Mert S, Unlu B (2011) Effect of high levels of dietary copper sulfate and copper proteinate on growth performance retention for copper and zinc of rate. J Anim Vet Adv 10:1373–1377. https://doi.org/10.3923/javaa.2011.1373.1377

    Article  CAS  Google Scholar 

  27. Kakefuda Y, Sato A, Watabe H, Aihara H, Nishina H, Noguchi Y, Hoshi T, Aonuma K (2003) Effect and possible role of Zn treatment in LEC rats, an animal model of Wilson’s disease. Biochim Biophys Acta 1637(1):91–97. https://doi.org/10.1016/S0925-4439(02)00218-1

    Article  Google Scholar 

  28. Knox D, Cowey CB, Adron JW (1984) Effects of dietary zinc intake upon copper metabolism in rainbow trout (Salmo gairdneri). Aquaculture 40:199–207. https://doi.org/10.1016/0044-8486(84)90187-X

    Article  CAS  Google Scholar 

  29. Fuentealba C, Mullins JE, Aburto EM, Lau JC, Cherian GM (2000) Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. J Toxicol Clin Toxicol 38:709–717. https://doi.org/10.1081/CLT-100102384

    Article  CAS  PubMed  Google Scholar 

  30. Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G (2010) Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev 254:876–889. https://doi.org/10.1016/j.ccr.2009.12.018

    Article  CAS  Google Scholar 

  31. Nose Y, Thiele DJ, Lee J, Peña MMO (2001) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387. https://doi.org/10.1074/jbc.M104728200

    Article  CAS  PubMed  Google Scholar 

  32. Nose Y, Kim BE, Thiele DJ (2006) Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab 4:235–244. https://doi.org/10.1016/j.cmet.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Flores SR, Ha JH, Doguer C, Woloshun RR, Xiang P, Grosche A, Vidyasagar S, Collins JF (2018) Intestinal DMT1 is essential for optimal assimilation of dietary copper in male and female mice with iron-deficiency anemia. J Nutr 148:1244–1252. https://doi.org/10.1093/jn/nxy111

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zimnicka AM, Ivy K, Kaplan JH (2011) Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am J Physiol Cell Physiol 300:C588–C599. https://doi.org/10.1152/ajpcell.00054.2010

    Article  CAS  PubMed  Google Scholar 

  35. Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, Kim S, Mercer JFB, Linder MC (2008) Copper is taken up efficiently from albumin and alpha(2)-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol 295:C708–C721. https://doi.org/10.1152/ajpcell.00029.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee J, Petris MJ, Thiele DJ (2002) Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system. J Biol Chem 277:40253–40259. https://doi.org/10.1074/jbc.M208002200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Y. Y. Xie, X. Zhou, and Y. Y. Huang for their contribution in the animal experiments.

Funding

This study was funded by the Natural Science Foundation of Zhejiang Province of China (grant number LY18C200001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Zhi.

Ethics declarations

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Animal Experiment Committee of Hangzhou Normal University, Zhejiang Province, China; Permit Number: SYXK (Zhe) 2011-0157).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, M., Tang, P., Liu, Y. et al. Effects of Organic Copper on Growth Performance and Oxidative Stress in Mice. Biol Trace Elem Res 194, 455–462 (2020). https://doi.org/10.1007/s12011-019-01796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01796-2

Keywords

Navigation