Skip to main content
Log in

Methodological Aspects of In Vitro Assessment of Bio-accessible Risk Element Pool in Urban Particulate Matter

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In vitro tests simulating the elements release from inhaled urban particulate matter (PM) with artificial lung fluids (Gamble’s and Hatch’s solutions) and simulated gastric and pancreatic solutions were applied for an estimation of hazardous element (As, Cd, Cr, Hg, Mn, Ni, Pb and Zn) bio-accessibility in this material. An inductively coupled plasma optical emission spectrometry (ICP-OES) and an inductively coupled plasma mass spectrometry (ICP-MS) were employed for the element determination in extracted solutions. The effect of the extraction agent used, extraction time, sample-to-extractant ratio, sample particle size and/or individual element properties was evaluated. Different patterns of individual elements were observed, comparing Hatch’s solution vs. simulated gastric and pancreatic solutions. For Hatch’s solution, a decreasing sample-to-extractant ratio in a PM size fraction of <0.063 mm resulted in increasing leached contents of all investigated elements. As already proved for other operationally defined extraction procedures, the extractable element portions are affected not only by their mobility in the particulate matter itself but also by the sample preparation procedure. Results of simulated in vitro tests can be applied for the reasonable estimation of bio-accessible element portions in the particulate matter as an alternative method, which, consequently, initiates further examinations including potential in vivo assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Žalud P, Száková J, Sysalová J, Tlustoš P (2012) Factors influencing uptake of contaminated particulate matter in leafy vegetables. Cent Eur J Biol 7:519–530

    Article  Google Scholar 

  2. Rasmussen PE et al (2008) Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil. Hum Ecol Risk Assess: Int J 14:351–371

    Article  CAS  Google Scholar 

  3. Pupíková Z, Száková J, Sysalová J, Mestek O, Tlustoš P (2012) Direct and subsequent effects of contaminated urban particulate matter on risk element mobility and plant-availability in soil. Pol J Environ Stud 21:1807–1815

    Google Scholar 

  4. Moloi K, Viksna A, Lindgren ES, Standzenieks P (2002) Sequential leaching of trace elements in fine-particle aerosol samples on Teflon filters. X-Ray Spectrom 31:27–34

    Article  CAS  Google Scholar 

  5. Sysalová J, Száková J, Goessler W, Tremlová J (2011) Methodological study of extraction procedures applied to urban particulate matter. Cent Eur J Chem 9:1071–1079

    Article  Google Scholar 

  6. Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    Article  CAS  Google Scholar 

  7. Lee SW, Lee BT, Kim JY, Kim KW, Lee JS (2006) Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environ Monit Assess 119:233–244

    Article  PubMed  CAS  Google Scholar 

  8. Hettiarachchi GM, Pierzynski GM, Oehme FW, Sonmez O, Ryan JA (2003) Treatment of contaminated soil with phosphorus and manganese oxide reduces lead absorption by Sprague-Dawley rats. J Environ Qual 32:1335–1345

    Article  PubMed  CAS  Google Scholar 

  9. Juhasz AL, Weber J, Naidu R, Gancarz D, Rofe A, Todor D, Smith E (2010) Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Environ Sci Technol 44:5240–5247

    Article  PubMed  CAS  Google Scholar 

  10. Paradelo R et al (2011) Distribution and availability of trace elements in municipal solid waste composts. J Environ Monit 13:201–211

    Article  PubMed  CAS  Google Scholar 

  11. Chou JD, Wey MY, Liang HH, Chang SH (2009) Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. J Haz Mat 168:197–202

    Article  CAS  Google Scholar 

  12. Turner A, Price S (2008) Bioaccessibility of platinum group elements in automotive catalytic converter particulates. Environ Sci Technol 42:9443–9448

    Article  PubMed  CAS  Google Scholar 

  13. Nunez RP, Rey RD, Menduina ABM, Silva MTB (2007) Physiologically based extraction of heavy metals in compost: preliminary results. J Trace Elem Med Biol 21:83–85

    Article  Google Scholar 

  14. Rieuwerts JS, Searle P, Buck R (2006) Bioaccessible arsenic in the home environment in southwest England. Sci Total Environ 371:89–98

    Article  PubMed  CAS  Google Scholar 

  15. Colombo C, Monhemius AJ, Plant JA (2008) The estimation of the bioavailabilities of platinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using a physiologically based extraction test. Sci Total Environ 389:46–51

    Article  PubMed  CAS  Google Scholar 

  16. Tremlová J, Száková J, Sysalová J, Tlustoš P (2013) Bioavailability of arsenic, cadmium, iron and zinc in leafy vegetables amended with urban particulate matter suspension. J Sci Food Agric 93:1378–1384

    Article  PubMed  Google Scholar 

  17. Iwai K, Mizuno S, Miyasaka Y, Mori T (2005) Correlation between suspended particles in the environmental air and causes of disease among inhabitants: cross-sectional studies using the vital statistics and air pollution data in Japan. Environ Res 99:106–117

    Article  PubMed  CAS  Google Scholar 

  18. Herting G, Wallinder IO, Leygraf C (2007) Metal release from various grades of stainless steel exposed to synthetic body fluids. Corros Sci 49:103–111

    Article  CAS  Google Scholar 

  19. Pelucchi C, Negri E, Gallus S, Boffetta P, Tramacere I, La Vecchia C (2009) Long-term particulate matter exposure and mortality: a review of European epidemiological studies. BMC Public Health 9:453

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bargagli E, Monaci F, Bianchi N, Bucci C, Rottoli P (2008) Analysis of trace elements in bronchoalveolar lavage of patients with diffuse lung diseases. Biol Trace Elem Res 124:225–235

    Article  PubMed  CAS  Google Scholar 

  21. Sunil VR et al (2009) Pulmonary effects of inhaled diesel exhaust in aged mice. Toxicol Appl Pharmacol 241:283–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Morgan DL et al (1997) Comparative pulmonary absorption, distribution, and toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride in Sprague-Dawley rats. Toxicol Appl Pharmacol 147:399–410

    Article  PubMed  CAS  Google Scholar 

  23. Kodavanti UP, Hauser R, Christiani DC, Meng ZH, McGee J, Ledbetter A, Richards J, Costa DL (1998) Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol Sci 43:204–212

    PubMed  CAS  Google Scholar 

  24. Moss OR (1979) Simulants of lung interstitial fluid. Health Phys 36:447–448

    PubMed  CAS  Google Scholar 

  25. Hatch EG (1992) Comparative biochemistry of airway lining fluid. In: Parent RA (ed) Comparative biology of the normal lung, 1st edn. CRC, Boca Raton, p 617

    Google Scholar 

  26. Berlinger B, Ellingsen DG, Náray M, Záray G, Thomassen Y (2008) A study of the bio-accessibility of welding fumes. J Environ Monit 10:1448–1453

    Article  PubMed  CAS  Google Scholar 

  27. Hlavay J, Prohaska T, Weisz M, Wenzel WW, Stingeder GJ (2004) Determination of trace elements bound to soils and sediment fractions. Pure Appl Chem 76:415–442

    Article  CAS  Google Scholar 

  28. Sonmez O, Pierzynski GM (2005) Phosphorus and manganese oxides effects on soil lead bioaccessibility: PBET and TCLP. Water Air Soil Pollut 166:3–16

    Article  CAS  Google Scholar 

  29. Yang JK, Barnett M, Jardine PM, Brooks SC (2003) Factors controlling the bioaccessibility of arsenic(V) and lead(II) in soil. Soil Sedim Contam 12:165–179

    Article  CAS  Google Scholar 

  30. Tremlová J, Száková J, Tlustoš P (2010) An assessment of possible effect of risk elements contained in soil on human organism (in Czech). Chem Listy 104:349–352

    Google Scholar 

  31. Kašparovská K, Száková J, Sysalová J, Tlustoš P, Svoboda P (2013) In-vitro bioavailability of hazardous elements from inhaled urban particulate matter (in Czech). Chem Listy 107:313–317

    Google Scholar 

  32. Sysalová J, Sýkorová I, Havelcová M, Száková J, Trejtnarová H, Kotlík B (2012) Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway. Sci Total Environ 437:127–136

    Article  PubMed  Google Scholar 

  33. Intawongse M, Dean JR (2008) Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environ Pollut 152:60–72

    Article  PubMed  CAS  Google Scholar 

  34. Smichowski P, Gómez D, Frazzoli C, Caroli S (2008) Traffic-related elements in airborne particulate matter. Appl Spectrosc Rev 43:23–49

    Article  Google Scholar 

  35. Ljung K, Selinus O, Otabbong E, Berglund M (2006) Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl Geoch 21:1613–1624

    Article  CAS  Google Scholar 

  36. Boszke L, Kowalski A, Astel A, Baraňski A, Gworek B, Siepak J (2008) Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55:1075–1087

    Article  CAS  Google Scholar 

  37. Pandey SK, Kim KH, Brown RJC (2011) Measurement techniques for mercury species in ambient air. Trends Anal Chem 30:899–917

    Article  CAS  Google Scholar 

  38. European Community, Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management. Off J, L296, 55

Download references

Acknowledgments

The authors thank for the financial support of the GA ČR projects 521/09/1150 and P503/12/0682

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiřina Sysalová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sysalová, J., Száková, J., Tremlová, J. et al. Methodological Aspects of In Vitro Assessment of Bio-accessible Risk Element Pool in Urban Particulate Matter. Biol Trace Elem Res 161, 216–222 (2014). https://doi.org/10.1007/s12011-014-0101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0101-x

Keywords

Navigation