Skip to main content
Log in

Developmental Formulation Principles of Food Preservatives by Nanoencapsulation—Fundamentals, Application, and Challenges

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The role of food additives is to preserve food by extending shelf life and limiting harmful microorganism proliferation. They prevent spoilage by enhancing the taste and safety of food by utilizing beneficial microorganisms and their antimicrobial metabolites. Current advances in food preservation and processing utilize green technology principles for green preservative formulation, enhancing nutrition and supplying essential micronutrients safely, while also improving quality, packaging, and food safety. Encapsulation is gaining attention for its potential to protect delicate materials from oxidative degradation and extend their shelf life, thereby ensuring optimal nutrient uptake. Nanoencapsulation of bioactive compounds has significantly improved the food, pharmaceutical, agriculture, and nutraceutical industries by protecting antioxidants, vitamins, minerals, and essential fatty acids by controlling release and ensuring delivery to specific sites in the human body. This emerging area is crucial for future industrial production, improving the sensory properties of foods like color, taste, and texture. Research on encapsulated bioactive compounds like bacteriocins, LAB, natamycin, polylysine, and bacteriophage is crucial for their potential antioxidant and antimicrobial activities in food applications and the food industry. This paper reviews nanomaterials used as food antimicrobial carriers, including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers, to protect natural food antimicrobials from degradation and improve antimicrobial activity. This review discusses nanoencapsulation techniques for biopreservative agents like nisin, poly lysine, and natamycin, focusing on biologically-derived polymeric nanofibers, nanocarriers, nanoliposomes, and polymer-stabilized metallic nanoparticles. Nanomaterials, in general, improve the dispersibility, stability, and availability of bioactive substances, and this study discusses the controlled release of nanoencapsulated biopreservative agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data is available upon request from the authors.

References

  1. Salas, M. L., Mounier, J., Valence, F., Coton, M., Thierry, A., Coton, E. (2017). Antifungal microbial agents for food biopreservation—A review. Microorganisms, 5, 37. https://doi.org/10.3390/microorganisms5030037

    Article  CAS  Google Scholar 

  2. Inanli, A. G., Tumerkan, E. T. A., EL Abed, N., Regenstein, J. M., & Ozogul, F. (2020). The impact of chitosan on seafood quality and human health: A review. Trends in Food Science & Technology, 97, 404–416. https://doi.org/10.1016/j.tifs.2020.01.029

    Article  CAS  Google Scholar 

  3. Shenashen, M. A., Emran, M. Y., El Sabagh, A., Selim, M. M., Elmarakbi, A., & El-Safty, S. A. (2022). Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Progress in Materials Science, 124, 100866. https://doi.org/10.1016/j.pmatsci.2021.100866

    Article  CAS  Google Scholar 

  4. Westerholm, M., Liu, T., & Schnürer, A. (2020). Comparative study of industrial-scale high-solid biogas production from food waste: Process operation and microbiology. Bioresource Technology, 304, 122981. https://doi.org/10.1016/j.biortech.2020.122981

    Article  CAS  PubMed  Google Scholar 

  5. Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., & Lombó, F. (2018). Biofilms in the food industry: health aspects and control methods. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00898

  6. Mamta, S., & Bala, S. (2017). Food processing, food spoilage and their prevention: An overview. International Journal of Life-Sciences Scientific Research, 3. https://doi.org/10.21276/ijlssr.2017.3.1.1

  7. Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural products as platforms to overcome antibiotic resistance. Chemical Reviews, 117, 12415–12474. https://doi.org/10.1021/acs.chemrev.7b00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magesh, S., Murthykumar, K., & Ganapathy, D. (2022). Different types of bio preservatives -A comprehensive review. Journal of Pharmaceutical Negative Results, 13. https://doi.org/10.47750/pnr.2022.13.s04.107

  9. Gruskiene, R., et al. (2021). Nisin-loaded ulvan particles: Preparation and characterization. Foods, 10, 1007. https://doi.org/10.3390/foods10051007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vaclavik, V. A., & Christian, E. W. (2013). Food Preservation. Food Science Text Series, 323–342. https://doi.org/10.1007/978-1-4614-9138-5_16

  11. Pisoschi, A. M., Pop, A., Georgescu, C., Turcu, S. V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922–935. https://doi.org/10.1016/j.ejmech.2017.11.095

    Article  CAS  PubMed  Google Scholar 

  12. Olszewska, M. A., Gedas, A., & Simões, M. (2020). Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Research International, 134, 109214.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, M., Li, S., Chen, Z., Zhu, J., Hao, W., Jia, G., et al. (2021). Safety assessment of nanoparticles in food: Current status and prospective. Nano Today, 39, 101169. https://doi.org/10.1016/j.nantod.2021.101169

    Article  CAS  Google Scholar 

  14. Priyanka, S., Namasivayam, S. K., Bharani, R. A., & John, A. (2023). Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties-- A sustainable developmental goal towards the effective, safe food preservation strategy. Chemosphere, 336, 139240. https://doi.org/10.1016/j.chemosphere.2023.139240

    Article  CAS  PubMed  Google Scholar 

  15. Xu, Y., Wu, Z., Li, A., Chen, N., Rao, J., & Zeng, Q. (2024). Nanocellulose composite films in food packaging materials: A review. Polymers, 16(3), 423. https://doi.org/10.3390/polym16030423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zambrano-Zaragoza, M., González-Reza, R., Mendoza-Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T., Mendoza-Elvira, S., & Quintanar-Guerrero, D. (2018). Nanosystems in edible coatings: A novel strategy for food preservation. International Journal of Molecular Sciences, 19(3), 705. https://doi.org/10.3390/ijms19030705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Sousa, M. S., Schlogl, A. E., Estanislau, F. R., Souza, V. G. L., dos Reis Coimbra, J. S., & Santos, I. J. B. (2023). Nanotechnology in packaging for food industry: Past, present, and future. Coatings, 13(8), 1411. https://doi.org/10.3390/coatings13081411

    Article  CAS  Google Scholar 

  18. Brandelli, A., Lopes, N. A., & Pinilla, C. M. B. (2023). Nanostructured antimicrobials for quality and safety improvement in dairy products. Foods, 12(13), 2549. https://doi.org/10.3390/foods12132549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rahman, M., Islam, R., Hasan, S., Zzaman, W., Rana, M. R., Ahmed, S., et al. (2022). A comprehensive review on bio-preservation of bread: An approach to adopt wholesome strategies. Foods, 11(3), 319. https://doi.org/10.3390/foods11030319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramos-Vivas, J., et al. (2021). Phages and enzybiotics in food biopreservation. Molecules, 26, 17. https://doi.org/10.3390/molecules26175138

    Article  CAS  Google Scholar 

  21. Singh, V. P. (2018a). Recent approaches in food bio-preservation - A review. Open Veterinary Journal, 8, 104. https://doi.org/10.4314/ovj.v8i1.16

    Article  PubMed  PubMed Central  Google Scholar 

  22. Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00594

  23. Rasika, D. M., Vidanarachchi, J. K., Rocha, R. S., Balthazar, C. F., Cruz, A. G., Sant’Ana, A. S., & Ranadheera, C. S. (2021). Plant-based milk substitutes as emerging probiotic carriers. Current Opinion in Food Science, 38, 8–20. https://doi.org/10.1016/j.cofs.2020.10.025

    Article  CAS  Google Scholar 

  24. Udayakumar, S., Rasika, D. M. D., Priyashantha, H., Vidanarachchi, J. K., & Ranadheera, C. S. (2022). Probiotics and beneficial microorganisms in biopreservation of plant-based foods and beverages. Applied Sciences, 12(22), 11737. https://doi.org/10.3390/app122211737

    Article  CAS  Google Scholar 

  25. Aggarwal, N. K., Dhiman, R., & Kaur, M. (2015). Comparative evaluation of antimicrobial activities of commonly used indian spices against microbes associated with juices. Research Journal of Microbiology, 10(4), 170–180. https://doi.org/10.3923/jm.2015.170.180

    Article  Google Scholar 

  26. Tanhaeian, A., Sekhavati, M. H., & Moghaddam, M. (2020). Antimicrobial activity of some plant essential oils and an antimicrobial-peptide against some clinically isolated pathogens. Chemical and Biological Technologies in Agriculture, 7. https://doi.org/10.1186/s40538-020-00181-9

  27. Gonelimali, F. D., et al. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01639

  28. Saeed, F., Afzaal, M., Tufail, T., & Ahmad, A. (2019). Use of natural antimicrobial agents: A safe preservation approach. Active Antimicrobial Food Packaging. https://doi.org/10.5772/intechopen.80869

  29. Bonetti, A., Tugnoli, B., Rossi, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020). Nature-identical compounds and organic acids reduce E. coli K88 growth and virulence gene expression in Vitro. Toxins., 12, 468–479. https://doi.org/10.3390/toxins12080468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X., Dong, C., Hu, Y., Gao, M., & Luan, G. (2021a). Zein as a structural protein in gluten-free systems: an overview. Food Science and Human Wellness, 10, 270–277. https://doi.org/10.1016/j.fshw.2021.02.018

    Article  CAS  Google Scholar 

  31. Singh, V. P. (2018b). Recent approaches in food bio-preservation - A review. Open Veterinary Journal, 8, 104. https://doi.org/10.4314/ovj.v8i1.16

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., Esatbeyoglu, T., & Bakhshayesh, R. V. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods, 10, 3131. https://doi.org/10.3390/foods10123131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Juturu, V., & Wu, J. C. (2018). Microbial production of bacteriocins: Latest research development and applications. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2018.10

  34. Jia, Z., et al. (2018). Effect of Nisin on Microbiome-brain-gut axis neurochemicals by Escherichia coli -induced diarrhea in mice. Microbial Pathogenesis, 119, 65–71. https://doi.org/10.1016/j.micpath.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  35. Meena, M., et al. (2021). Natamycin: A natural preservative for food applications—A review. Food Science and Biotechnology, 30, 1481–1496. https://doi.org/10.1007/s10068-021-00981-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patil, N. A., & Kandasubramanian, B. (2021). Functionalized polylysine biomaterials for advanced medical applications: A review. European Polymer Journal, 146, 110248. https://doi.org/10.1016/j.eurpolymj.2020.110248

    Article  CAS  Google Scholar 

  37. Manouchehri, S., et al. (2021). Advanced Delivery Systems Based on Lysine or Lysine Polymers. Molecular Pharmaceutics, 18, 3652–3670. https://doi.org/10.1021/acs.molpharmaceut.1c00474

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, X., Dong, C., Hu, Y., Gao, M., & Luan, G. (2021b). Zein as a structural protein in gluten-free systems: an overview. Food Science and Human Wellness, 10, 270–277. https://doi.org/10.1016/j.fshw.2021.02.018

    Article  CAS  Google Scholar 

  39. Sneha Bokadia, G., & Gopinath, P. (2017). Bacteriophage in human body A –systematic review. Research Journal of Pharmacy and Technology, 10, 1204–1208. https://doi.org/10.5958/0974-360X.2017.00216.5

    Article  Google Scholar 

  40. Vikram, A., Woolston, J., & Sulakvelidze, A. (2021). Phage Biocontrol Applications in Food Production and Processing. Current Issues in Molecular Biology, 267–302. https://doi.org/10.21775/cimb.040.267

  41. Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2020). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical Reviews in Food Science and Nutrition, 1–22. https://doi.org/10.1080/10408398.2020.1761773

  42. Gómez, B., Barba, F. J., Domínguez, R., Putnik, P., Bursać Kovačević, D., Pateiro, M., Toldrá, F., & Lorenzo, J. M. (2018). Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends in Food Science and Technology, 82, 135–147. https://doi.org/10.1016/j.tifs.2018.10.006

    Article  CAS  Google Scholar 

  43. Mehta, N., et al. (2022). Microencapsulation as a noble technique for the application of bioactive compounds in the food industry: A comprehensive review. Applied Sciences, 12, 1424. https://doi.org/10.3390/app12031424

    Article  CAS  Google Scholar 

  44. Najjaa, H., Chekki, R., Elfalleh, W., Tlili, H., Jaballah, S., & Bouzouita, N. (2020). Freeze-dried, oven-dried, and microencapsulation of essential oil from allium sativum as potential preservative agents of minced meat. Food Science & Nutrition, 8, 1995–2003. https://doi.org/10.1002/fsn3.1487

    Article  CAS  Google Scholar 

  45. Mohsin, A., et al. (2020). Xanthan-Curdlan nexus for synthesizing edible food packaging films. Journal of Biological Macromolecules, 16, 43–49. https://doi.org/10.1016/j.ijbiomac.2020.06.008

    Article  CAS  Google Scholar 

  46. Mukhtara, M., Fényesa, E., Bartosa, C., Zeeshanb, M., & Ambrusa, R. (2021). Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. European Polymer Journal, 160, 110767. https://doi.org/10.1016/j.eurpolymj.2021.110767

    Article  CAS  Google Scholar 

  47. David, G., Gontard, N., & Angellier-Coussy, H. J. P. (2019). Mitigating the impact of cellulose particles on the performance of biopolyester-based composites by gasphase esterification. Polymers, 11, 200. https://doi.org/10.3390/polym11020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eivazzadeh-Keihan, R., et al. (2022). Recent advances on biomedical applications of pectin-containing biomaterials. International Journal of Biological Macromolecules, 217, 1–18. https://doi.org/10.1016/j.ijbiomac.2022.07.016

    Article  CAS  PubMed  Google Scholar 

  49. Kontominas, M. G. (2020). Use of Alginates as food packaging materials. Foods, 9, 1440. https://doi.org/10.3390/foods9101440

    Article  PubMed  PubMed Central  Google Scholar 

  50. Temesgen, S., et al. (2021). Review on spinning of biopolymer fibers from starch. Polymers, 13, 1121. https://doi.org/10.3390/polym13071121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pech-Canul, A. d. l. C., et al. (2020). A brief review of edible coating materials for the microencapsulation of probiotics. Coatings, 10, 197. https://doi.org/10.3390/coatings10030197

    Article  CAS  Google Scholar 

  52. Le, N. T. T., et al. (2019). Soy lecithin-derived liposomal delivery systems: Surface modification and current applications. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20194706

  53. Miyasaki, E. K., Luccas, V., & Kieckbusch, T. G. (2016). Modified soybean lecithins as inducers of the acceleration of cocoa butter crystallization. European Journal of Lipid Science and Technology, 118, 1539–1549. https://doi.org/10.1002/ejlt.201500093

    Article  CAS  Google Scholar 

  54. Minj, S., & Anand, S. (2020). Whey proteins and its derivatives: Bioactivity, functionality, and current applications. Dairy, 1, 233–258. https://doi.org/10.3390/dairy1030016

    Article  Google Scholar 

  55. Ma, X., & Chatterton, D. E. W. (2021). Strategies to improve the physical stability of sodium caseinate stabilized emulsions: A literature review. Food Hydrocolloids, 119, 106853. https://doi.org/10.1016/j.foodhyd.2021.106853

    Article  CAS  Google Scholar 

  56. Glusac, J., & Fishman, A. (2021). Enzymatic and chemical modification of zein for food application. Trends in Food Science & Technology, 112, 507–517. https://doi.org/10.1016/j.tifs.2021.04.024

    Article  CAS  Google Scholar 

  57. Zhang, H., Zhao, B., Wang, H., Wang, J., Teng, Y., Sun, Y., Li, Y., & Wang, C. (2022). Water-/oil-repellent polyacrylonitrile nanofiber air filter modified with silica nanoparticles and fluorine compounds. ACS Applied Nano Materials, 5, 8131–8141. https://doi.org/10.1021/acsanm.2c01247

    Article  CAS  Google Scholar 

  58. Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., & Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483

    Article  CAS  Google Scholar 

  59. Vettorazzi, A., López de Cerain, A., Sanz-Serrano, J., Gil, A. G., & Azqueta, A. (2020). European Regulatory Framework and Safety Assessment of Food-Related Bioactive Compounds. Nutrients, 12(3), 613. https://doi.org/10.3390/nu12030613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. S. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tamang, N., Shrestha, P., Khadka, B., Mondal, M. H., Saha, B., & Bhattarai, A. (2021). A review of biopolymers’ utility as emulsion stabilizers. Polymers, 14(1), 127. https://doi.org/10.3390/polym14010127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Opriș, O., Mormile, C., Lung, I., Stegarescu, A., Soran, M. L., & Soran, A. (2024). An overview of biopolymers for drug delivery applications. Applied Sciences, 14(4), 1383. https://doi.org/10.3390/app14041383

    Article  CAS  Google Scholar 

  63. Gaygadzhiev, Z. (2022). Factors affecting emulsion stability, viscosity, and foaming capacity of concentrated infant formula emulsions: An industry relevant approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4206746

  64. Flórez, M., Cazón, P., & Vázquez, M. (2023). Selected biopolymers’ processing and their applications: A review. Polymers, 15(3), 641. https://doi.org/10.3390/polym15030641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sadiku, M. N. O., Akhare, Y. P., Ajayi-Majebi, A., & Musa, S. M. (2020). Nanomaterials: A primer. International Journal of Advances in Scientific Research and Engineering, 7, 1–6. https://doi.org/10.31695/IJASRE.2021.33972

    Article  Google Scholar 

  66. Pal, A., & Bhunia, K. (2022). Nanotechnology in microbial food safety. Food, Medical, and Environmental Applications of Nanomaterials, 253–304. https://doi.org/10.1016/b978-0-12-822858-6.00020-0

  67. Ningthoujam, R., Jena, B., Pattanayak, S., Dash, S., Panda, M. K., Behera, R. K., Dhal, N. K., & Singh, Y. D. (2021). Nanotechnology in food science. Bio-Nano Interface, 59–73. https://doi.org/10.1007/978-981-16-2516-9_4

  68. Sharma, A., et al. (2023). Nanotechnology applications and implications in food industry. Nanotechnology Applications for Food Safety and Quality Monitoring, 171–182. https://doi.org/10.1016/b978-0-323-85791-8.00016-1

  69. Bumbudsanpharoke, N., et al. (2015). Applications of nanomaterials in food packaging. Journal of Nanoscience and Nanotechnology, 15, 6357–6372. https://doi.org/10.1166/jnn.2015.10847

    Article  CAS  PubMed  Google Scholar 

  70. Primožič, M., Knez, E., & Leitgeb, M. (2023). (Bio)Nanotechnology in food science—Food packaging. Nanomaterials, 11(2), 292. https://doi.org/10.3390/nano11020292

    Article  CAS  Google Scholar 

  71. Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88, 146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003

    Article  CAS  Google Scholar 

  72. Taouzinet, L., Djaoudene, O., Fatmi, S., Bouiche, C., Amrane-Abider, M., Bougherra, H., Rezgui, F., & Madani, K. (2023). Trends of nanoencapsulation strategy for natural compounds in the food industry. Processes, 11, 1459. https://doi.org/10.3390/pr11051459

    Article  CAS  Google Scholar 

  73. Mandal, R., Singh, A., & Pratap Singh, A. (2018). (2018, October). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93103. https://doi.org/10.1016/j.tifs.2018.07.014

    Article  CAS  Google Scholar 

  74. Kumar Sahu, C., Dhanashri Sanjay, S., & Kadeppagari, R. K. (2022). Application of nanotechnology for encapsulation of micronutrients. In Handbook of Consumer Nanoproducts (pp. 765–772). https://doi.org/10.1007/978-981-16-8698-6_93

    Chapter  Google Scholar 

  75. Pateiro, M., Gomez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Danijela, B. K., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality, and the appearance of the final food products. Molecules, 26, 1547. https://doi.org/10.3390/molecules26061547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shafiq, M., Anjum, S., Hano, C., Anjum, I., & Abbasi, B. H. (2020). An overview of the applications of nanomaterials and nanodevices in the food industry. Foods, 9(2), 148. https://doi.org/10.3390/foods9020148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, M., Guo, Q., Lin, Y., Bao, H., & Miao, S. (2023). Recent progress in microencapsulation of active peptides—wall material, preparation, and application: A review. Foods, 12(4), 896. https://doi.org/10.3390/foods12040896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xue, R., Yuan, X., Jiang, H., Huang, H., Luo, X., & Li, P. (2024). Preparation and physicochemical analysis of Camellia sinensis cv. ‘Ziyan’ anthocyanin microcapsules. Foods, 13(4), 618. https://doi.org/10.3390/foods13040618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lidia, A. V., Carlos, Z. M., Alicia, R. M., Amalia, V., & Jose, V. B. (2019). Nutraceuticals: definition, applied nanoengineering in their production and applications. International Journal of Biosensors & Bioelectronics, 5(3). https://doi.org/10.15406/ijbsbe.2019.05.00154

  80. Koutsoumanis, K., et al. (2021). Application of Quantitative Microbiological Risk Assessment (QMRA) to food spoilage: Principles and methodology. Trends in Food Science & Technology, 114, 189–197. https://doi.org/10.1016/j.tifs.2021.05.011

    Article  CAS  Google Scholar 

  81. Karthick Raja Namasivayam, S., et al. (2022). Green chemistry principles for the synthesis of anti-fungal active gum acacia-gold nanocomposite - Natamycin (GA-AuNC–NT) against food spoilage fungal strain Aspergillus ochraceopealiformis and its marked congo red dye adsorption efficacy. Environmental Research, 212, 113386. https://doi.org/10.1016/j.envres.2022.113386

    Article  CAS  PubMed  Google Scholar 

  82. Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628–647.

    Article  CAS  Google Scholar 

  83. Bratovcic, A., & Suljagic, J. (2019). Micro- and nano-encapsulation in food industry. Croatian. Journal of Food Science and Technology, 11, 113–121. https://doi.org/10.17508/cjfst.2019.11.1.17

    Article  Google Scholar 

  84. Stella, B., Marengo, A., & Arpicco, S. (2017). Nanoparticles: An overview of the preparation methods from preformed polymers. Istituto Lombardo-Accademia di Scienze e Lettere-Incontri di Studio. https://doi.org/10.4081/incontri.2017.266

    Book  Google Scholar 

  85. Tahir, A., Shabir Ahmad, R., Imran, M., Ahmad, M. H., Kamran Khan, M., Muhammad, N., & Javed, M. (2021). Recent approaches for utilization of food components as nano-encapsulation: A review. International Journal of Food Properties, 24, 1074–1096. https://doi.org/10.1080/10942912.2021.1953067

    Article  CAS  Google Scholar 

  86. Patel, D., Zode, S. S., & Bansal, A. K. (2020). Formulation aspects of intravenous nanosuspensions. International Journal of Pharmaceutics, 586, 119555. https://doi.org/10.1016/j.ijpharm.2020.119555

    Article  CAS  PubMed  Google Scholar 

  87. Jayaprakash, P., et al. (2023). Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. Journal of Food Engineering, 339, 111260. https://doi.org/10.1016/j.jfoodeng.2022.111260

    Article  CAS  Google Scholar 

  88. Jafari, S. M., Arpagaus, C., Cerqueira, M. A., & Samborska, K. (2021). Nano spray drying of food ingredients; materials, processing and applications. Trends in Food Science & Technology, 109, 632–646. https://doi.org/10.1016/j.tifs.2021.01.061

    Article  CAS  Google Scholar 

  89. Buljeta, I., et al. (2022). Polysaccharides as carriers of polyphenols: Comparison of freeze-drying and spray-drying as encapsulation techniques. Molecules, 27, 5069. https://doi.org/10.3390/molecules27165069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song, Y., Zhang, H., Huang, H., Zhang, Y., Wang, H., Li, Y., & Wang, C. (2022). Allicin-loaded electrospun PVP/PVB nanofibrous films with superior water absorption and water stability for antimicrobial food packaging. ACS Food Science & Technology, 2, 941–950. https://doi.org/10.1021/acsfoodscitech.2c00080

    Article  CAS  Google Scholar 

  91. Huang, H., Song, Y., Zhang, Y., Li, Y., Li, J., Lu, X., & Wang, C. (2022). Electrospun nanofibers: current progress and applications in food systems. Journal of Agricultural and Food Chemistry, 70(5), 1391–1409. https://doi.org/10.1021/acs.jafc.1c05352

    Article  CAS  PubMed  Google Scholar 

  92. Namasivayam, S. K. R., John, A., RS, A. B., Kavisri, M., & Moovendhan, M. (2022). Biocompatible formulation of cationic antimicrobial peptide Polylysine (PL) through nanotechnology principles and its potential role in food preservation — A review. International Journal of Biological Macromolecules, 222, 1734–1746. https://doi.org/10.1016/j.ijbiomac.2022.09.238

    Article  CAS  Google Scholar 

  93. Musielak, E., Feliczak-Guzik, A., & Nowak, I. (2022). Synthesis and potential applications of lipid nanoparticles in medicine. Materials, 15(2), 682. https://doi.org/10.3390/ma15020682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ahmad, J. (2021). Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders. Cosmetics, 8(3), 84. https://doi.org/10.3390/cosmetics8030084

    Article  CAS  Google Scholar 

  95. Moradi, S., & Barati, A. (2019). Essential oils nanoemulsions: Preparation, characterization and study of antibacterial activity against Escherichia Coli. International Journal of Nanoscience and Nanotechnology, 15, 199–210.

    CAS  Google Scholar 

  96. Husni, P., & Ramadhania, Z. M. (2021). Plant extract loaded nanoparticles. Indonesian Journal of Pharmaceutics, 3(38). https://doi.org/10.24198/idjp.v3i1.34032

  97. Kamat, V., Bodas, D., & Paknikar, K. (2016). Chitosan nanoparticles synthesis caught in action using microdroplet reactions. Scientific Reports, 6. https://doi.org/10.1038/srep22260

  98. Karthick Raja Namasivayam, S., Srinivasan, S., Samrat, K., Priyalakshmi, B., Dinesh Kumar, R., Bharani, A., et al. (2023). Sustainable approach to manage the vulnerable rodents using eco-friendly green rodenticides formulation through nanotechnology principles – A review. Process Safety and Environmental Protection, 171, 591–606. https://doi.org/10.1016/j.psep.2023.01.050

    Article  CAS  Google Scholar 

  99. Khorasani, S., Danaei, M., & Mozafari, M. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science & Technology, 79, 106–115. https://doi.org/10.1016/j.tifs.2018.07.009

    Article  CAS  Google Scholar 

  100. Keshkaran, M., Mizani, M., Ebrahimzadeh Mousavi, M., Mohammadifar, M., & Azizinejad, R. (2022). optimization of berberine extraction conditions from seedless barberry and microencapsulation of the extract using complex coacervation and gelatin/ tragacanth (Astragalus rahensis). Iranian Journal of Nutrition Sciences & Food Technology, 17(1), 111–122. https://doi.org/10.52547/nsft.17.1.111

  101. Bajac, J., Nikolovski, B., Lončarević, I., Petrović, J., Bajac, B., Đurović, S., & Petrović, L. (2022). Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: Microcapsule characterization and release kinetics of the oil. Food Hydrocolloids, 125. https://doi.org/10.1016/j.foodhyd.2021.107430

  102. Budinčić, J. M., et al. (2021). Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydrate Polymers, 251. https://doi.org/10.1016/j.carbpol.2020.116988

  103. Ogilvie-Battersby, J. D., Nagarajan, R., Mosurkal, R., & Orbey, N. (2022). Microencapsulation and controlled release of insect repellent geraniol in gelatin/gum Arabic microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128494. https://doi.org/10.1016/j.colsurfa.2022.128494

    Article  CAS  Google Scholar 

  104. Rasul, N. H., Asdagh, A., Pirsa, S., Ghazanfarirad, N., & Sani, I. K. (2022). Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express, 9(2), 025306. https://doi.org/10.1088/2053-1591/ac50d6

    Article  Google Scholar 

  105. Baltrusch, S. K. L., Torres, M. D., Domínguez, H., & Flórez-Fernández, N. (2022). Spray-Drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. International Journal of Biological Macromolecules, 203. https://doi.org/10.1016/j.ijbiomac.2022.01.129

  106. Chen, K., et al. (2021). Quinoa protein-gum Arabic complex coacervates as a novel carrier for eugenol: Ppreparation, characterization and application for minced pork preservation. Food Hydrocolloids, 120, 106915. https://doi.org/10.1016/j.foodhyd.2021.106915

    Article  CAS  Google Scholar 

  107. Febrianta, H., et al. (2022). Dietary addition of microencapsulated turmeric in an amorphous matrix of maltodextrin on quality characteristics of broiler chicken. Journal of Advanced Veterinary and Animal Research, 9, 221. https://doi.org/10.5455/javar.2022.i587

    Article  PubMed  PubMed Central  Google Scholar 

  108. Constantino, T., Bene, A., & Garcia-Rojas, E. E. (2022). Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. Food Hydrocolloids, 133, 107956. https://doi.org/10.1016/j.foodhyd.2022.107956

    Article  CAS  Google Scholar 

  109. Mu, H., et al. (2022). Microencapsulation of algae oil by complex coacervation of chitosan and modified starch: Characterization and oxidative stability. International Journal of Biological Macromolecules, 194, 66–73. https://doi.org/10.1016/j.ijbiomac.2021.11.168

    Article  CAS  PubMed  Google Scholar 

  110. Đorđević, N., Karabegović, I., Cvetković, D., Šojić, B., Savić, D., & Danilović, B. (2022). Assessment of chitosan coating enriched with free and nanoencapsulated Satureja montana L. essential oil as a novel tool for beef preservation. Foods, 11(18), 2733. https://doi.org/10.3390/foods11182733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shan, Y., Duan, M., Sun, J., Jiang, H., Zhao, J., Tong, C., Pang, J., & Yu, C. W. (2022). Immobilization of phlorotannins on nanochitin: A novel biopreservative for refrigerated sea bass (lateolabrax japonicus) fillets. International Journal of Biological Macromolecules, 200, 626–634. https://doi.org/10.1016/j.ijbiomac.2022.01.089

    Article  CAS  Google Scholar 

  112. Mehdizadeh, A., Shahidi, S.-A., Shariatifar, N., Shiran, M., & Ghorbani-HasanSarae, A. (2022). Immobilization of phlorotannins on nanochitin: A novel biopreservative for refrigerated sea bass (lateolabrax japonicus) fillets. International Journal of Biological Macromolecules, 200, 626–634. https://doi.org/10.1016/j.ijbiomac.2022.01.089

    Article  CAS  Google Scholar 

  113. Nagaraju, P. G., Sengupta, P., Chicgovinda, P. P., Rao, P. J., & Nagaraju. (2021). Journal of Food Process Engineering, 44. https://doi.org/10.1111/jfpe.13645

  114. Charles, A. P. R., Richard, M., Jin, T. Z., Li, D., Pan, Z., Rakshit, S., Cui, S. W., & Ying, W. (2022). Application of yellow mustard mucilage and starch in nanoencapsulation of thymol and carvacrol by emulsion electrospray. Carbohydrate Polymers, 298, 120148. https://doi.org/10.1016/j.carbpol.2022.120148

    Article  CAS  PubMed  Google Scholar 

  115. Emami, S., Ahmadi, M., Nasiraie, L. R., Shahidi, S. A., & Jafarizadeh-Malmiri, H. (2022). Cinnamon extract and its essential oil nanoliposomes – Preparation, characterization and bactericidal activity assessment. Biologia, 77, 3015–3025. https://doi.org/10.1007/s11756-022-01164-x

    Article  CAS  Google Scholar 

  116. Garcia-Carrasco, M., Picos-Corrales, L. A., Gutiérrez-Grijalva, E. P., Angulo-Escalante, M. A., Licea-Claverie, A., & Basilio Heredia, J. (2022). Application of yellow mustard mucilage and starch in nanoencapsulation of thymol and carvacrol by emulsion electrospray. Carbohydrate Polymers, 298, 120148. https://doi.org/10.1016/j.carbpol.2022.120148

    Article  CAS  Google Scholar 

  117. Matche, R. S., Matche, O. O. A., Shantayya, R., & Adeogun, O. O. (2022). Physicochemical characterisations of nanoencapsulated eucalyptus globulus oil with gum Arabic and gum arabic nanocapsule and their biocontrol effect on anthracnose disease of syzygium malaccense fruits. Scientific African, 18, e01421. https://doi.org/10.1016/j.sciaf.2022.e01421

    Article  CAS  Google Scholar 

  118. Kryeziu, T. L., Haloci, E., Loshaj-Shala, A., Baǧci, U., Oral, A., Stefkov, G. J., Zimmer, A., & Basholli-Salihu, M. (2022). Nanoencapsulation of Origanum vulgare essential oil into liposomes with anticancer potential. Pharmazie, 77, 172–178. https://doi.org/10.1691/ph.2022.1230

    Article  CAS  PubMed  Google Scholar 

  119. Mahalakshmi, L., et al. (2020). Micro- and nano-encapsulation of Β-carotene in zein protein: Size-dependent release and absorption behavior. Food & Function, 11, 1647–1660. https://doi.org/10.1039/c9fo02088h

    Article  CAS  Google Scholar 

  120. Li, H., et al. (2022). Entrapment of curcumin in soy protein isolate using the pH-driven method: Nanoencapsulation and formation mechanism. LWT, 153, 112480. https://doi.org/10.1016/j.lwt.2021.112480

    Article  CAS  Google Scholar 

  121. Pinna, N., et al. (2022). Unconventional extraction of total non-polar carotenoids from pumpkin pulp and their nanoencapsulation. Molecules, 27, 8240. https://doi.org/10.3390/molecules27238240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Milsmann, J., et al. (2018). Fate of edible solid lipid nanoparticles (SLN) in surfactant stabilized O/W emulsions. Part 1: interplay of SLN and oil droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 615–622. https://doi.org/10.1016/j.colsurfa.2017.05.073

    Article  CAS  Google Scholar 

  123. Mahmoudzadeh, E., Nazemiyeh, H., Valizadeh, H., Khaleseh, F., Mohammadi, S., & Hamedeyazdan, S. (2022). Nanoencapsulation of n-butanol extract of Symphytum kurdicum and Symphytum asperrimum: Focus on phytochemical analysis, anti-oxidant and antibacterial activity. Iranian Journal of Basic Medical Sciences, 25(3), 364–371. https://doi.org/10.22038/IJBMS.2022.62032.13760

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Lavanya—literature collection, manuscript writing

S. Karthick Raja Namasivayam—conceptualization, supervision, review and editing, image processing, editing

Arun John—docking studies, editing

Corresponding author

Correspondence to S. Karthick Raja Namasivayam.

Ethics declarations

Consent to Participate

In this study, animal and human trials are not applicable.

Consent to Publish

Not applicable.

Ethical Approval

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, M., Namasivayam, S.K.R. & John, A. Developmental Formulation Principles of Food Preservatives by Nanoencapsulation—Fundamentals, Application, and Challenges. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04943-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04943-1

Keywords

Navigation