Skip to main content
Log in

An Evidence of Carbonic Anhydrase Activity in Native Microalgae for CO2 Capture Application

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A promising alternative for effective carbon capture has been found in microalgae because of their high photosynthetic capacity and quick growth. The carbon concentration mechanism of many microalgae is heavily reliant on the enzyme carbonic anhydrase (CA), which catalyze the production of bicarbonate from carbon dioxide. In this study, microalgal samples were collected, characterized, and cultured under controlled conditions for their optimal growth of cultures I-IX. The CA activity was investigated using a standard method; the Wilbur–Anderson assay was used to calculate CA activity in microalgal cultures. The comparative study was then used to measure the activity rate of the collected microalgae. Among the tested, culture I, VI, and IX showed a high enzyme activity rate of 4.15, 4.0, and 4.2 µg·mL−1, respectively. To determine the rate of carbon dioxide hydration, the method involved tracking the pH change in a reaction mixture. In addition, genetic analysis facilitates the identification of key genes involved in CA activity and other metabolic processes, which enhance the knowledge of microalgal physiology, and enables genetic engineering efforts in the future studies. Overall, this investigation emphasizes the significance of studying unknown microalgal culture and their potential CA activity for industrial and bio-energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Araujo de S, G. R., Souza, W. D., & Frases, S. (2017). The hidden pathogenic potential of environmental fungi. Future Microbiology, 12(16), 1533-1540. https://doi.org/10.2217/fmb-2017-0124

  2. Grover, M., Maheswari, M., Desai, S., Gopinath, K. A., & Venkateswarlu, B. (2015). Elevated CO2: Plant associated microorganisms and carbon sequestration. Applied Soil Ecology, 95, 73–85. https://doi.org/10.1016/j.apsoil.2015.05.006

    Article  Google Scholar 

  3. Kaur, S., Bhattacharya, A., Sharma, A., & Tripathi, A. K. (2012). Diversity of microbial carbonic anhydrases, their physiological role and applications. Microorganisms in Environmental Management: Microbes and Environment, 151–173. https://doi.org/10.1007/978-94-007-2229-3_7

  4. Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization. Communications Chemistry, 4(1), 23. https://doi.org/10.1038/s42004-021-00461-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mboge, M. Y., Mahon, B. P., McKenna, R., & Frost, S. C. (2018). Carbonic anhydrases: Role in pH control and cancer. Metabolites, 8(1), 19. https://doi.org/10.3390/metabo8010019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fabrizi, F., Mincione, F., Somma, T., Scozzafava, G., Galassi, F., Masini, E., ... & Supuran, C. T. (2012). A new approach to antiglaucoma drugs: Carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(1), 138–147. https://doi.org/10.3109/14756366.2011.597749

  7. Khan, M., Halim, S. A., Shafiq, Z., Islam, M., Shehzad, M. T., Ibrar, A., ... & Al-Harrasi, A. (2022). Inhibitory efficacy of thiosemicarbazones for carbonic Anhydrase II (bovine and human) as a target of calcification and tumorigenicity. Current Pharmaceutical Design, 28(36), 3010–3022. https://doi.org/10.2174/1381612828666220729105849

  8. Li, B., Liu, N., & Zhao, X. (2022). Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnology for Biofuels and Bioproducts, 15(1), 28. https://doi.org/10.1186/s13068-022-02127-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kassim, M. A., Adnan, M. F. I. M., Tan, K. M., Bakar, M. H. A., Lalung, J., & Mohamed, M. S. (2020). Carbonic anhydrase (CA) activity by Chlorella sp. in immobilised matrix under carbon dioxide rich cultivation condition. In IOP Conference Series: Materials Science and Engineering (Vol. 716, No. 1, p. 012015). IOP Publishing. https://doi.org/10.1088/1757-899X/716/1/012015

  10. Hopkinson, B. M., Meile, C., & Shen, C. (2013). Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiology, 162(2), 1142–1152. https://doi.org/10.1104/pp.113.217737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie, T., & Wu, Y. (2014). The role of microalgae and their carbonic anhydrase on the biological dissolution of limestone. Environmental Earth Sciences, 71, 5231–5239. https://doi.org/10.1007/s12665-013-2925-7

    Article  ADS  CAS  Google Scholar 

  12. Effendi, S. S. W., & Ng, I. S. (2019). The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review. Process Biochemistry, 87, 55–65. https://doi.org/10.1016/j.procbio.2019.08.018

    Article  CAS  Google Scholar 

  13. Vaara, T., Vaara, M., & Niemelä, S. (1979). Two improved methods for obtaining axenic cultures of cyanobacteria. Applied and Environmental Microbiology, 38(5), 1011–1014. https://doi.org/10.1128/aem.38.5.1011-1014.1979

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rippka, R., Deruelles, J., Waterbury, J., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  15. Huang, Y. T., van der Hoorn, D., Ledahawsky, L. M., Motyl, A. A., Jordan, C. Y., Gillingwater, T. H., & Groen, E. J. (2019). Robust comparison of protein levels across tissues and throughout development using standardized quantitative western blotting. JoVE (Journal of Visualized Experiments), 146, e59438. https://doi.org/10.3791/59438

    Article  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  17. Sathya, R., MubarakAli, D., Mehboob Nousheen, M. G., Vasimalai, N., Thajuddin, N., Kim, J.-W. (2020). An investigation of pepsin hydrolysate of short antibacterial peptides derived from limnospira Sp. Applied Biochemical Biotechnology 194(11), 5580–5593. https://doi.org/10.1007/s12010-022-04023-2

  18. Freeman, J. A., & Wilbur, K. M. (1948). Carbonic anhydrase in molluscs. The Biological Bulletin, 94(1), 55–59. https://doi.org/10.2307/1538209

    Article  CAS  PubMed  Google Scholar 

  19. da Costa, J., Ores, M. C., De Amarante, A., Fernandes, S. S., & Kalil, S. J. (2016). Production of carbonic anhydrase by marine and freshwater microalgae. Biocatalysis and Biotransformation, 34(2), 5765. https://doi.org/10.1080/10242422.2016.1227793

    Article  CAS  Google Scholar 

  20. Almomani, F., & Örmeci, B. (2018). Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method. Environmental Monitoring and Assessment, 190(2). https://doi.org/10.1007/s10661-018-6468-y

  21. Santos-Ballardo, D. U., Rossi, S., Hernández, V., Gómez, R. V., Del Carmen Rendón-Unceta, M., Caro-Corrales, J., & Valdéz-Ortiz, Á. (2015). A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture, 448, 87–92. https://doi.org/10.1016/j.aquaculture.2015.05.044

    Article  CAS  Google Scholar 

  22. Mota, M., De Souza, M. F., Bon, E. P. S., Rodrigues, M. A., & Freitas, S. P. (2018). Colorimetric protein determination in microalgae (Chlorophyta): Association of milling and SDS treatment for total protein extraction. Journal of Phycology, 54(4), 577–580. https://doi.org/10.1111/jpy.12754

    Article  CAS  PubMed  Google Scholar 

  23. Craveiro, R., Dusschooten, F., Nabais, A. R., Boboescu, I., Lo, C., Neves, L. A., Sá, M. (2022). Deep eutectic systems for carbonic anhydrase extraction from microalgae biomass to improve carbon dioxide solubilization. Journal of CO2 Utilization, 65, 102225. ISSN 2212–9820. https://doi.org/10.1016/j.jcou.2022.102225

  24. Hassan, M. I., Shajee, B., Waheed, A., Ahmad, F., & Sly, W. S. (2013). Structure, function and applications of carbonic anhydrase isozymes. Bioorganic & Medicinal Chemistry, 21(6), 1570–1582. https://doi.org/10.1016/j.bmc.2012.04.044

    Article  CAS  Google Scholar 

  25. Mirjafari, P., Asghari, K., & Mahinpey, N. (2007). Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial & Engineering Chemistry Research, 46(3), 921–926. https://doi.org/10.1021/ie060287u

    Article  CAS  Google Scholar 

  26. Lin, W. R., Lai, Y. C., Sung, P. K., Tan, S. I., Chang, C. H., Chen, C. Y., ... & Ng, I. S. (2018). Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. Journal of the Taiwan Institute of Chemical Engineers93, 131–141. https://doi.org/10.1016/j.jtice.2018.10.010

  27. Swenson, E. R. (2014). Carbonic anhydrase inhibitors and high altitude illnesses. Carbonic Anhydrase: Mechanism, Regulation, Links To disease, and Industrial Applications, 361–386. https://doi.org/10.1007/978-94-007-7359-2_18

  28. Ren, S., Chen, R., Wu, Z., Su, S., Hou, J., & Yuan, Y. (2021). Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids and Surfaces B: Biointerfaces, 204, 111779. https://doi.org/10.1016/j.colsurfb.2021.111779

    Article  CAS  PubMed  Google Scholar 

  29. Kotani, S., Yoshiwara, Y., Ogasawara, M., Sugiura, M., & Nakajima, M. (2018). Catalytic enantioselective aldol reactions of unprotected carboxylic acids under phosphine oxide catalysis. Angewandte Chemie International Edition, 57(48), 15877–15881. https://doi.org/10.1002/anie.201810599

    Article  CAS  PubMed  Google Scholar 

  30. van Hille, R., Fagan, M., Bromfield, L., & Pott, R. (2014). A modified pH drift assay for inorganic carbon accumulation and external carbonic anhydrase activity in microalgae. Journal of applied phycology, 26, 377–385. https://doi.org/10.1007/s10811-013-0076-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grant from Crescent Seed Money (CSM) in the year 2022 (CSD/CSM/2022/29) and National Research Foundation (NRF) No. 2020R1A2C110169011 funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Contributions

DM and NK: data acquisition, drafting, and interpretation; AK & SR: process and validation; NT & JWK: review and proofreading.

Corresponding authors

Correspondence to MubarakAli Davoodbasha or Thajuddin Nooruddin.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodbasha, M., Kathiravan, N., Jayakannan, A. et al. An Evidence of Carbonic Anhydrase Activity in Native Microalgae for CO2 Capture Application. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04908-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04908-4

Keywords

Navigation