Skip to main content

Advertisement

Log in

Wound Dressing Scaffold with High Anti-biofilm Performance Based on Ciprofloxacin-Loaded Chitosan-Hydrolyzed Starch Nanocomposite: In Vitro and In Vivo Study

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Today, the search for solutions to reduce wound infection and restore wound receptivity also reduces its side effects which are a difficult problem in medical science research. The greatest options for this purpose are hydrogel dressings since they are compatible with tissue and have an antibacterial effect on wound healing. Chronic wounds represent a significant burden on people and healthcare systems worldwide. Bacteria often enter such skin wounds, causing irritation and complicating the healing process. In addition, bacteria cause infection, which inhibits rejuvenation and the production of collagen. This study is aimed at developing novel chitosan (CS)—hydrolyzed starch nanocomposite (HS/Ch-NC) loaded with ciprofloxacin to enhance its skin retention and wound healing efficacy and anti-biofilm efficacy. Drug-loading on the (HS/Ch-NC) and encapsulation efficiency was 55.2% and 97.2%, respectively. The activity of HS-NC loaded with ciprofloxacin as anti-biofilm activity by 72% and 63% against Enterobacter aerogenes and Pseudomonas aeruginosa, respectively. The obtained (HS/Ch-NC) loaded with ciprofloxacin is a promising candidate for the development of improved bandage materials, as cell viability and proliferation was assessed using an SRB assay with half-maximal inhibitory concentrations (IC50) at 119.1 µg/ml. In vitro scratch wound healing assay revealed significant (p ≤ 0.05) acceleration in wound closure at 24 h enhanced by 56.04% 24-h and 100% 72-h post-exposure to (HS/Ch-NC) loaded ciprofloxacin, compared to the negative control. In vivo skin retention study revealed that (HS/Ch-NC)-loaded ciprofloxacin showed 3.65-fold higher retention, respectively, than ciprofloxacin. Thus, our study assumes that ciprofloxacin-loaded HS-NC is a potential delivery system for enhancing ciprofloxacin skin retention and wound healing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Criollo-Mendoza, M. S., Contreras-Angulo, L. A., Leyva-López, N., Gutiérrez-Grijalva, E. P., Jiménez-Ortega, L. A., & Heredia, J. B. (2023). Wound healing properties of natural products: Mechanisms of action. Molecules, 28(2), 598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.

    Article  CAS  PubMed  Google Scholar 

  3. Kenawy, E., Abdel-Hay, F. I., MohyEldin, M., Tamer, T., & Ibrahim, E. (2015). Novel aminated chitosan-aromatic aldehydes Schiff bases: Synthesis, characterization and bio-evaluation. International Journal of Advanced Research, 3(2), 563–572.

    CAS  Google Scholar 

  4. Osama, S., Hussain, A. A., Mm, R., Shehabeldine, A. M., & Hasanin, M. S. (2022). Preliminary study for cellulolytic microorganism isolation from different resources, characterization and identification: Green convert of microcrystalline cellulose to nanofibers. Egyptian Journal of Chemistry, 65(131), 1265–1273.

    Google Scholar 

  5. Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10(1), 27–37.

    Article  Google Scholar 

  6. Shehabeldine, A. M., Hashem, A. H., Wassel, A. R., & Hasanin, M. (2022). Antimicrobial and antiviral activities of durable cotton fabrics treated with nanocomposite based on zinc oxide nanoparticles, acyclovir, nanochitosan, and clove oil. Applied Biochemistry and Biotechnology, 194(2), 783–800.

    Article  CAS  PubMed  Google Scholar 

  7. Dacrory, S., Hashem, A. H., & Kamel, S. (2022). Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan@ clove oil beads. Biotechnology Journal, 17(2), 2100298.

    Article  CAS  Google Scholar 

  8. Ibrahim, A. G., Elgammal, W. E., Hashem, A. H, Mohamed, A. E., Awad, M. A., & Hassan, S. M. (2023). Development of a chitosan derivative bearing the thiadiazole moiety and evaluation of its antifungal and larvicidal efficacy. Polymer Bulletin, 1–23. https://doi.org/10.1007/s00289-023-04765-x

  9. Cui, C., Sun, S., Wu, S., Chen, S., Ma, J., & Zhou, F. (2021). Electrospun chitosan nanofibers for wound healing application. Engineered Regeneration, 2, 82–90.

    Article  Google Scholar 

  10. He, Y., Zhao, W., Dong, Z., Ji, Y., Li, M., Hao, Y., Zhang, D., Yuan, C., Deng, J., & Zhao, P. (2021). A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. International Journal of Biological Macromolecules, 167, 182–192.

    Article  CAS  PubMed  Google Scholar 

  11. Abdelghany, T. M., Al-Rajhi, A. M., Yahya, R., Bakri, M. M., Al Abboud, M. A., Yahya, R., Qanash, H., Bazaid, A. S., & Salem, S. S. (2023). Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 13(1), 417–430.

    Article  CAS  Google Scholar 

  12. Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC advances, 8(14), 7533–7549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mubeen, B., Ansar, A. N., Rasool, R., Ullah, I., Imam, S. S., Alshehri, S., Ghoneim, M. M., Alzarea, S. I., Nadeem, M. S., & Kazmi, I. (2021). Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics, 10(12), 1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salem, S. S., Hammad, E. N., Mohamed, A. A., & El-Dougdoug, W. (2022). A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Research in Applied Chemistry, 13(1), 41.

    Article  Google Scholar 

  15. Salem, S. S. (2023). A mini review on green nanotechnology and its development in biological effects. Archives of Microbiology, 205(4), 128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hashem, A. H., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hasanin, M. (2022). Synthesis of nanocapsules based on biosynthesized nickel nanoparticles and potato starch: Antimicrobial, antioxidant, and anticancer activity. Starch-Stärke, 74(1–2), 2100165.

    Article  CAS  Google Scholar 

  17. Hasanin, M., Al Abboud, M. A., Alawlaqi, M. M., Abdelghany, T. M., & Hashem, A. H. (2022). Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: Antimicrobial, antioxidant, and anticancer activities. Biological Trace Element Research, 200(5), 2099–2112. https://doi.org/10.1007/s12011-021-02812-0

    Article  CAS  PubMed  Google Scholar 

  18. Dacrory, S., Hashem, A. H., & Hasanin, M. (2021). Synthesis of cellulose based amino acid functionalized nano-biocomplex: Characterization, antifungal activity, molecular docking and hemocompatibility. Environmental Nanotechnology, Monitoring & Management, 15, 100453. https://doi.org/10.1016/j.enmm.2021.100453

    Article  CAS  Google Scholar 

  19. Abu-Elghait, M., Hasanin, M., Hashem, A. H., & Salem, S. S. (2021). Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 175, 294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040

    Article  CAS  PubMed  Google Scholar 

  20. Hashem, A. H., Hasanin, M., Kamel, S., & Dacrory, S. (2022). A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloids and Surfaces B: Biointerfaces, 209, 112172. https://doi.org/10.1016/j.colsurfb.2021.112172

    Article  CAS  PubMed  Google Scholar 

  21. Lin, M., Liu, Y., Gao, J., Wang, D., Xia, D., Liang, C., Li, N., & Xu, R. (2022). Synergistic effect of co-delivering ciprofloxacin and tetracycline hydrochloride for promoted wound healing by utilizing coaxial PCL/gelatin nanofiber membrane. International Journal of Molecular Sciences, 23(3), 1895.

  22. Elakraa, A. A., Salem, S. S., El-Sayyad, G. S., & Attia, M. S. (2022). Cefotaxime incorporated bimetallic silver-selenium nanoparticles: Promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Advances, 12(41), 26603–26619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salem, S. S., Hashem, A. H., Sallam, A.-A.M., Doghish, A. S., Al-Askar, A. A., Arishi, A. A., & Shehabeldine, A. M. (2022). Synthesis of silver nanocomposite based on carboxymethyl cellulose: Antibacterial, antifungal and anticancer activities. Polymers, 14(16), 3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shehabeldine, A., & Hasanin, M. (2019). Green synthesis of hydrolyzed starch–chitosan nano-composite as drug delivery system to gram negative bacteria. Environmental Nanotechnology, Monitoring & Management, 12, 100252.

    Article  Google Scholar 

  25. Martins, L. G., & Mainardes, R. M. (2017). Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly (lactic acid) nanoparticles. Journal of pharmaceutical analysis, 7(6), 388–393.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ohnishi, N., Yamamoto, E., Tomida, H., Hyodo, K., Ishihara, H., Kikuchi, H., Tahara, K., & Takeuchi, H. (2013). Rapid determination of the encapsulation efficiency of a liposome formulation using column-switching HPLC. International Journal of Pharmaceutics, 441(1–2), 67–74.

    Article  CAS  PubMed  Google Scholar 

  27. Kragh, K. N., Alhede, M., Kvich, L., & Bjarnsholt, T. (2019). Into the well—A close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm, 1, 100006.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Soliman, M. K., Salem, S. S., Abu-Elghait, M., & Azab, M. S. (2023). Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Applied Biochemistry and Biotechnology, 195(2), 1158–1183.

    Article  CAS  PubMed  Google Scholar 

  29. Shehabeldine, A. M., Amin, B. H., Hagras, F. A., Ramadan, A. A., Kamel, M. R., Ahmed, M. A., Atia, K. H., & Salem, S. S. (2023). Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: Time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Applied Biochemistry and Biotechnology, 195(1), 467–485.

    Article  CAS  PubMed  Google Scholar 

  30. Shehabeldine, A., El-Hamshary, H., Hasanin, M., El-Faham, A., & Al-Sahly, M. (2021). Enhancing the antifungal activity of griseofulvin by incorporation a green biopolymer-based nanocomposite. Polymers, 13(4), 542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shehabeldine, A. M., Ashour, R. M., Okba, M. M., & Saber, F. R. (2020). Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. Journal of ethnopharmacology, 254, 112669.

    Article  CAS  PubMed  Google Scholar 

  32. Bai, J.-R., Wu, Y.-P., Elena, G., Zhong, K., & Gao, H. (2019). Insight into the effect of quinic acid on biofilm formed by Staphylococcus aureus. RSC advances, 9(7), 3938–3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vajrabhaya, L.-o, & Korsuwannawong, S. (2018). Cytotoxicity evaluation of a Thai herb using tetrazolium (MTT) and sulforhodamine B (SRB) assays. Journal of Analytical Science and Technology, 9(1), 1–6.

    Article  Google Scholar 

  34. Hashem, A. H., Shehabeldine, A. M., Ali, O. M., & Salem, S. S. (2022). Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities. Polymers, 14(11), 2293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Doghish, A. S., Hashem, A. H., Shehabeldine, A. M., Sallam, A.-A.M., El-Sayyad, G. S., & Salem, S. S. (2022). Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology, 77, 103874.

    Article  CAS  Google Scholar 

  36. Farag, M. M., Ahmed, M. M., Abdallah, N. M., Swieszkowski, W., & Shehabeldine, A. M. (2020). The combined antibacterial and anticancer properties of nano Ce-containing Mg-phosphate ceramic. Life Sciences, 257, 117999.

    Article  CAS  PubMed  Google Scholar 

  37. Mohsen, A. M., Nagy, Y. I., Shehabeldine, A. M., & Okba, M. M. (2023). Thymol-loaded Eudragit RS30D cationic nanoparticles-based hydrogels for topical application in wounds: In vitro and in vivo evaluation. Pharmaceutics, 15(1), 19.

    Article  CAS  Google Scholar 

  38. Cappiello, F., Casciaro, B., & Mangoni, M. L. (2018). A novel in vitro wound healing assay to evaluate cell migration. JoVE (Journal of Visualized Experiments), 133, e56825.

    Google Scholar 

  39. Lee, J.-H., Kim, H.-L., Lee, M. H., You, K. E., Kwon, B.-J., Seo, H. J., & Park, J.-C. (2012). Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model. Phytomedicine, 19(13), 1223–1227.

    Article  CAS  PubMed  Google Scholar 

  40. Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., & Hashem, A. H. (2022). Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. Journal of Fungi, 8(6), 612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abioye, A. O., Issah, S., & Kola-Mustapha, A. T. (2015). Ex vivo skin permeation and retention studies on chitosan–ibuprofen–gellan ternary nanogel prepared by in situ ionic gelation technique—A tool for controlled transdermal delivery of ibuprofen. International journal of pharmaceutics, 490(1–2), 112–130.

    Article  CAS  PubMed  Google Scholar 

  42. Assa, F., Jafarizadeh-Malmiri, H., Ajamein, H., Vaghari, H., Anarjan, N., Ahmadi, O., & Berenjian, A. (2017). Chitosan magnetic nanoparticles for drug delivery systems. Critical reviews in biotechnology, 37(4), 492–509.

    Article  CAS  PubMed  Google Scholar 

  43. Carrion, C. C., Nasrollahzadeh, M., Sajjadi, M., Jaleh, B., Soufi, G. J., & Iravani, S. (2021). Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. International Journal of Biological Macromolecules, 178, 193–228.

    Article  CAS  PubMed  Google Scholar 

  44. Badwan, A. A., Rashid, I., Al Omari, M. M., & Darras, F. H. (2015). Chitin and chitosan as direct compression excipients in pharmaceutical applications. Marine Drugs, 13(3), 1519–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schubert, J., & Chanana, M. (2019). Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Current Medicinal Chemistry, 25(35), 4556.

    PubMed Central  Google Scholar 

  46. Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R., & Angaiah, S. (2020). Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess and Biosystems Engineering, 43(9), 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  47. Kushwaha, A., Rani, R., & Kumar, S. (2017). Mechanism of soil-metal-microbe interactions and their implication on microbial bioremediation and phytoremediation. In: P. Kumar, B. R. Gurjar & J. N. Govil (Eds.), Environmental science and engineering. Biodegradation and bioremediation (Vol. 8, 1st ed.). Studium Press LLC, New Delhi

  48. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings–A review. Biomedicine, 5(4), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nagoba, B., Davane, M., Gandhi, R., Wadher, B., Suryawanshi, N., & Selkar, S. (2017). Treatment of skin and soft tissue infections caused by Pseudomonas aeruginosa—A review of our experiences with citric acid over the past 20 years. Wound Medicine, 19, 5–9.

    Article  Google Scholar 

  50. Song, K., Hao, Y., Liu, Y., Cao, R., Zhang, X., He, S., Wen, J., Zheng, W., Wang, L., & Zhang, Y. (2023). Preparation of pectin-chitosan hydrogels based on bioadhesive-design micelle to prompt bacterial infection wound healing. Carbohydrate Polymers, 300, 120272.

    Article  CAS  PubMed  Google Scholar 

  51. Roy, D. C., Tomblyn, S., Burmeister, D. M., Wrice, N. L., Becerra, S. C., Burnett, L. R., Saul, J. M., & Christy, R. J. (2015). Ciprofloxacin-loaded keratin hydrogels prevent Pseudomonas aeruginosa infection and support healing in a porcine full-thickness excisional wound. Advances in Wound Care, 4(8), 457–468.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.

    Article  CAS  PubMed  Google Scholar 

  53. Kart, D., Reçber, T., Nemutlu, E., & Sagiroglu, M. (2021). Sub-inhibitory concentrations of ciprofloxacin alone and combinations with plant-derived compounds against P. aeruginosa biofilms and their effects on the metabolomic profile of P. aeruginosa biofilms. Antibiotics, 10(4), 414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Faculty of science (Boys), Al-Azhar University, Cairo, Egypt, for providing the necessary research facilities; also, authors extend their appreciation to the researcher supporting project number (RSP2023R505), King Saud University, Riyadh, Saudi Arabia, for funding this work.

Funding

The authors extend their appreciation to the researcher supporting project number (RSP2023R505), King Saud University, Riyadh, Saudi Arabia, for funding publication fees.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amr M. Shehabeldine or Amr H. Hashem.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehabeldine, A.M., Al-Askar, A.A., AbdElgawad, H. et al. Wound Dressing Scaffold with High Anti-biofilm Performance Based on Ciprofloxacin-Loaded Chitosan-Hydrolyzed Starch Nanocomposite: In Vitro and In Vivo Study. Appl Biochem Biotechnol 195, 6421–6439 (2023). https://doi.org/10.1007/s12010-023-04665-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04665-w

Keywords

Navigation