Skip to main content

Advertisement

Log in

Phytochemicals, Biodegradation, Cytocompatibility and Wound Healing Profiles of Chitosan Film Embedded Green Synthesized Antibacterial ZnO/CuO Nanocomposite

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Open wound ulcer treatment remains a great challenge in wound care management especially involving multi drug resistant (MDR) pathogen. Currently, lack of effectiveness of commercially available wound dressing material is one of the primary factors delaying the wound healing. Therefore, transformation of plain Chitosan (Cs) to antibacterial polymer nanocomposite with embedment of Quercetin-ZnO/CuO biocide through green synthesis approach shed light for an efficient wound healing management. The present work studied the phytochemicals, biodegradation, storage, cytocompatibility and wound healing profiles of Cs film embedded with Quercetin-ZnO/CuO from Calotropis gigantea (C. gigantea). HPLC was used to detect Quercetin bioactive constituent. Our cytocompatibility study demonstrated ZnO/CuO-Cs-1wt.% displayed highest cell viability (168.52 ± 14.46%) at 72 h treatment. Besides, the ZnO/CuO-Cs-1wt.% is fully biodegradable. The ZnO/CuO-Cs-1wt.% also exhibited significantly enhanced cell migration (26.81 μm/h) and wound closure (62.35 ± 9.46%) at 12 h. This finding is also supported by our in vivo excisional open wound studies in Sprague-Dawley (SD) rats, which showed progressive recovery in 14 days. The controllable release of multiple metal ions from ZnO/CuO-Cs might contribute to the wound recovery. This study highlighted the promising outcomes exhibited from ZnO/CuO-Cs-1wt.% in wound healing management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available due to the patent application but are available from the corresponding author on reasonable request.

Abbreviations

Cs:

Chitosan

C. gigantea :

Calotropis gigantea

CuO:

Copper oxide

ZnO:

Zinc oxide

C:

Carbon

Ca:

Calcium

ROS:

Reactive oxygen species

MDR:

Multi drug resistant

MRSA:

Methicillin-resistant Staphylococcus aureus

P. aeruginosa :

Pseudomonas aeruginosa

S. aureus :

Staphylococcus aureus

E.coli :

Escherichia coli

B. subtilis :

Bacillus subtilis

K. Pneumoniae :

Klebsiella pneumoniae

S. pyogenes :

Streptococcus pyogenes

h:

hour

References

  1. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beyene RT, Derryberry SL Jr, Barbul A (2020) The Effect of Comorbidities on Wound Healing. Surg Clin North Am 100(4):695–705

    Article  PubMed  Google Scholar 

  3. Jeong H, Lee J, Cha E, Park M, Son I, Song B, Kim S (2014) A study on the oral toxicity of mecasin in rats. J Pharmacopunct 17(4):61–65

    Article  Google Scholar 

  4. Zhou T, Yang Z, Chen Y, Chen Y, Huang Z, You B, Peng Y, Chen J (2016) Estrogen accelerates cutaneous Wound Healing by promoting proliferation of epidermal keratinocytes via Erk/Akt signaling pathway. Cell Physiol Biochem 38(3):959–968

    Article  CAS  PubMed  Google Scholar 

  5. Yang M, Lee S, Wang T, Cha E, Jang J, Kim D, Song B, Son I, Kim J, Kang HW, Kim S (2019) 26-Week repeated dose oral toxicity study of KCHO-1 in Sprague-Dawley rats. J Pharmacopunct 22(3):192–199

    Article  Google Scholar 

  6. Eberlein T, Haemmerle G, Signer M, Gruber-Moesenbacher U, Traber J, Mittlboeck M, Abel M, Strohal R (2012) Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. J Wound Care 21(1):12–20

    Article  CAS  PubMed  Google Scholar 

  7. Finnegan S, Percival SL (2015) Clinical and Antibiofilm Efficacy of Antimicrobial Hydrogels. Adv Wound Care 4(7):398–406

    Article  Google Scholar 

  8. Kumar G, Karthik L, Rao KVB (2010) Antibacterial activity of Aqueous Extract of Calotropis gigantea Leaves – an in Vitro Study. Int J Pharm Sci Rev Res 4(2):141

    Google Scholar 

  9. Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G (2015) Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 632:321–325

    Article  CAS  Google Scholar 

  10. Sangeetha K, Steffi PF, Selvi BT, Priyadarshni S (2020) Phytochemical evaluation, GC-MS analysis of Phytoactive Compounds and Antibacterial Activity Studies from Calotropis gigantea. J Pharm Sci Res 12(6):789–794

    CAS  Google Scholar 

  11. Govindasamy GA, Mydin RBSMN, Sreekantan S et al (2021) Compositions and antimicrobial properties of binary ZnO–CuO nanocomposites encapsulated calcium and carbon from Calotropis gigantea targeted for skin pathogens. Sci Rep 11:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng H, Shi Z, Yue K et al (2021) Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 124:219–232

    Article  CAS  PubMed  Google Scholar 

  13. Doan VK, Tran CM, Ho TT-P, Nguyen LK-K, Nguyen YN, Tang NT et al (2022) Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing. Polymers 14:3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duan Y, Li K, Wang H et al (2020) Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr Polym 238:116195

    Article  CAS  PubMed  Google Scholar 

  15. El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM (2020) Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr Polym 238:116175

    Article  CAS  PubMed  Google Scholar 

  16. Gao Z, Su C, Wang C, Zhang Y, Wang C, Yan H, Hou G (2021) Antibacterial and hemostatic bilayered electrospun nanofibrous wound dressings based on quaternized silicone and quaternized chitosan for wound healing. Eur Polymer J 159:110733

    Article  CAS  Google Scholar 

  17. Gharehpapagh AC, Farahpour MR, Jafarirad S (2021) The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 183:447–456

    Article  Google Scholar 

  18. Hajikhani M, Emam-Djomeh Z, Askari G (2021) Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int J Biol Macromol 172:143–153

    Article  CAS  PubMed  Google Scholar 

  19. Hao M, Peng X, Sun S, Ding C, Liu W (2022) Chitosan/Sodium Alginate/Velvet Antler blood peptides Hydrogel Promoted Wound Healing by regulating PI3K/AKT/mTOR and SIRT1/NF-κB pathways. Front Pharmacol 13:913408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin X, Fu Q, Gu Z, Zhang Z, Lv H (2021) Chitosan/PDLLA-PEG-PDLLA solution preparation by simple stirring and formation into a hydrogel at body temperature for whole wound healing. Int J Biol Macromol 184:787–796

    Article  CAS  PubMed  Google Scholar 

  21. Li Q, Liu K, Jiang T, Ren S et al (2021) Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing. Mater Sci Engineering: C 131:112519

    Article  CAS  Google Scholar 

  22. Lin S, Pei L, Zhang W, Shu G et al (2021) Chitosan-poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor benefit for antibacterial and wound healing. Mater Sci Engineering: C 130:112450

    Article  CAS  Google Scholar 

  23. Liu Z, Tang W, Liu J et al (2022) A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioactive Mater 20:610–626

    Article  Google Scholar 

  24. Long M, Liu Q, Wang D et al (2021) A new nanoclay-based bifunctional hybrid fiber membrane with hemorrhage control and wound healing for emergency self-rescue. Mater Today Adv 12:100190

    Article  CAS  Google Scholar 

  25. Naeimi A, Payandeh M, Ghara AR, Ghadi FE (2020) In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym 240:116315

    Article  CAS  PubMed  Google Scholar 

  26. Negi P, Sharma G, Verma C et al (2020) Novel thymoquinone loaded chitosan-lecithin micelles for effective wound healing: development, characterization, and preclinical evaluation. Carbohydr Polym 230:115659

    Article  CAS  PubMed  Google Scholar 

  27. Shanmugapriya K, Kim H, Kang HW (2020) Fucoidan-loaded hydrogels facilitates wound healing using photodynamic therapy by in vitro and in vivo evaluation. Carbohydr Polym 247:116624

    Article  CAS  PubMed  Google Scholar 

  28. Tao B, Lin C, Guo A, Yu Y, Qin X, Li K et al (2021) Fabrication of copper ions-substituted hydroxyapatite/polydopamine nanocomposites with high antibacterial and angiogenesis effects for promoting infected wound healing. J Ind Eng Chem 104:345–355

    Article  CAS  Google Scholar 

  29. Veeraperumal S, Qiu HM, Zeng SS, Yao WZ et al (2020) Polysaccharides from Gracilaria lemaneiformis promote the HaCaT keratinocytes wound healing by polarised and directional cell migration. Carbohydr Polym 241:116310

    Article  CAS  PubMed  Google Scholar 

  30. Viezzer C, Mazzuca R, Machado DC et al (2020) A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model. Carbohydr Polym 231:115734

    Article  CAS  PubMed  Google Scholar 

  31. Xia G, Zhai D, Sun Y et al (2020) Preparation of a novel asymmetric wettable chitosan-based sponge and its role in promoting chronic wound healing. Carbohydr Polym 227:115296

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Xia S, Weng T et al (2022) Antibacterial coaxial hydro-membranes accelerate diabetic wound healing by tuning surface immunomodulatory functions. Mater Today Bio 16:100395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng Z, Bian S, Li Z et al (2020) Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing. Carbohydr Polym 249:116826

    Article  CAS  PubMed  Google Scholar 

  34. Aloucheh RM, Yangjeh AH, Bayrami A, Navid SL, Asadi A (2018) Green synthesis of ZnO and ZnO/CuO nanocomposites in Mentha longifolia leaf extract: characterization and their application as antibacterial agents. J Mater Sci: Mater Electron 29:13596–13605

    Google Scholar 

  35. Kumar CRR, Betageri VS, Nagaraju G, Pujar GH, Onkarappa HS, Latha MS (2020) One-pot green synthesis of ZnO–CuO nanocomposite and their enhanced photocatalytic and antibacterial activity. Adv Nat Sci NanoSci NanoTechnol 11:015009

    Article  CAS  Google Scholar 

  36. Aloucheh RM, Yangjeh AH, Bayrami A, Navid SL, Asadi A (2018) Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artif cells Nanomed Biotechnol 46(sup1):1200–1209

    Article  Google Scholar 

  37. Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C Mater Biol Appl 82:46–59

    Article  CAS  PubMed  Google Scholar 

  38. Govindasamy GA, Mydin RBSMN, Sreekantan S et al (2022) Novel Dual-ionic ZnO/CuO Embedded in Porous Chitosan Biopolymer for Wound Dressing Application: Physicochemical, Bactericidal, Cytocompatibility and Wound Healing Profiles.Materials Today Communications104545

  39. Mradu G, Saumyakanti S, Sohini M, Arup M (2012) HPLC Profiles of Standard Phenolic Compounds Present in Medicinal plants. Int J Pharmacognosy Phytochemical Res 4(3):162–167

    Google Scholar 

  40. Li Z, Shi Y, Zhang X, Xu J, Wang H, Zhao L, Wang Y (2020) Screening Immunoactive Compounds of Ganoderma lucidum spores by Mass Spectrometry Molecular networking combined with in vivo zebrafish assays. Front Pharmacol 11:287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. No HK, Kim SH, Lee SH, Park NY, Prinyawiwatkul W (2006) Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr Polym 65(2):174–178

    Article  CAS  Google Scholar 

  42. Maiti S, Khillar PS, Mishra D, Nambiraj NA, Jaiswal AK (2021) Physical and self–crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polym Test 97:107155

    Article  CAS  Google Scholar 

  43. Anisha BS, Biswas R, Chennazhi KP, Jayakumar R (2013) Chitosan–hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biol Macromol 62:310–320

    Article  CAS  PubMed  Google Scholar 

  44. Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, Rudnicka K, Gatkowska J, Sobczak‐Kupiec A, Jampilek J (2019) In vitro biosafety of pro‐ecological chitosan based hydrogels modified with natural substances. J Biomedical Mater Res Part A 107(11):2501–2511

    Article  CAS  Google Scholar 

  45. Cannella V, Altomare R, Chiaramonte G et al (2019) Cytotoxicity evaluation of endodontic pins on L929 cell line. Biomed Res Int 2019:3469525

    Article  PubMed  PubMed Central  Google Scholar 

  46. Konwar A, Kalita S, Kotoky J, Chowdhury D (2016) Chitosan-iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial bio-film. ACS Appl Mater Interfaces 8(32):20625–20634

    Article  CAS  PubMed  Google Scholar 

  47. Luo Z, Liu J, Lin H, Ren X, Tian H, Liang Y et al (2020) In situ fabrication of Nano ZnO/BCM Biocomposite Based on MA modified bacterial cellulose membrane for Antibacterial and Wound Healing. Int J Nanomed 15:1–15

    Article  CAS  Google Scholar 

  48. Afrasiabi S, Bahador A, Partoaza A (2021) Combinatorial therapy of chitosan hydrogel-based zinc oxide nanocomposite attenuates the virulence of Streptococcus mutans.BMC Microbiology21(62)

  49. Mohandas A, Sudheesh Kumar P, Jayakumar R, Lakshmanan V-K, Biswas R (2015) Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds.International Journal of Nanomedicine53

  50. Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57

    Article  CAS  PubMed  Google Scholar 

  51. Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Kyzioł A, Stochel G (2017) Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv 7(83):52398–52413

    Article  CAS  PubMed  Google Scholar 

  52. Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215

    Article  CAS  PubMed  Google Scholar 

  53. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–469

    Article  CAS  PubMed  Google Scholar 

  54. Venkatesan J, Lee J-Y, Kang DS, Anil S, Kim S-K, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525

    Article  CAS  PubMed  Google Scholar 

  55. Balasubramaniam MP, Murugan P, Chenthamara D, Ramakrishnan SG, Salim A, Lin FH, Robert B, Subramaniam S (2020) Synthesis of chitosan-ferulic acid conjugated poly(vinyl alcohol) polymer film for an improved wound healing. Mater Today Commun 25:101510

    Article  CAS  Google Scholar 

  56. Felice F, Zambito Y, Belardinelli E, Fabiano A, Santoni T, Di Stefano R (2015) Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study. Int J Biol Macromol 76:236–241

    Article  CAS  PubMed  Google Scholar 

  57. Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V (2017) Research Techniques made simple: analysis of collective cell Migration using the Wound Healing Assay. J Invest Dermatology 137(2):e11–e16

    Article  CAS  Google Scholar 

  58. Suarez-Arnedo A, Torres Figueroa F, Clavijo C, Arbelaez P, Cruz JC, Munoz-Camargo C (2020) An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 15(7):e0232565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jamadi M, Shokrollahi P, Houshmand B, Joupari MD, Mashhadiabbas F, Khademhosseini A, Annabi N (2017) Poly (Ethylene Glycol)-Based hydrogels as self-inflating tissue expanders with tunable mechanical and Swelling Properties. Macromol Biosci 17(8):1600479

    Article  Google Scholar 

  60. Ismail NA, Amin KAM, Majid FAA, Razali MH (2019) Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies. Mater Sci Engineering: C 103:109770

    Article  CAS  Google Scholar 

  61. Yeng NK, Shaari R, Nordin ML, Sabri J (2019) Investigation of Wound Healing Effect of Acalypha Indica Extract in Sprague Dawley rats. Biomedical & Pharmacology Journal 12(4):1857–1865

    Article  Google Scholar 

  62. Fu C, Qi Z, Zhao C, Kong W, Li H, Guo W, Yang X (2021) Enhanced wound repair ability of arginine-chitosan nanocomposite membrane through the antimicrobial peptides-loaded polydopamine-modified graphene oxide.Journal of Biological Engineering15(1)

  63. Kumar PTS, Lakshmanan V, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: in Vitro and in vivo evaluation. ACS Appl Mater Interfaces 4(5):2618–2629

    Article  PubMed  Google Scholar 

  64. Baghaie S, Khorasani MT, Ali Z, Moshtaghian J (2017) Wound healing properties of PVA/ starch /chitosan hydrogel membranes with nano zinc oxide as antibacterial wound dressing material. J Biomaterials Sci Polym 28(18):2220–2241

    Article  CAS  Google Scholar 

  65. Okur NU, Hokenek N, Okur ME, Ayla S, Yoltas A, Siafaka PI, Cevher E (2019) An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 27(5):738–752

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu M, Liu T, Chen X, Yang J, Deng J, He W, Zhang X, Lei Q, Hu X, Lu G, Wu J (2018) Nano–silver–incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J Nanobiotechnol 16(1):89

    Article  CAS  Google Scholar 

  67. Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D (2014) Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 731:8–19

    Article  CAS  PubMed  Google Scholar 

  68. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic Effects and Mechanisms of CuO and ZnO nanoparticles. Mater (Basel) 5(12):2850–2871

    Article  CAS  Google Scholar 

  69. Ates M, Arslan Z, Demir V, Daniels J, Farah IO (2015) Accumulation and to xicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish Carassius auratus. Environ Toxicol 30(1):119–128

    Article  CAS  PubMed  Google Scholar 

  70. Goyal VK, Pandey SK, Kakade S, Nirogi R (2015) Evaluation of clinical chemistry analytes from a single mouse using diluted plasma: effective way to reduce the number of animals in toxicity studies. Lab Anim 0(0):1–8

    Google Scholar 

  71. Kaid F, Alabsi AM, Alafifi N, Ali-Saeed R, Al-koshab MA, Ramanathan A, Ali AM (2019) Histological, biochemical, and Hematological Effects of Goniothalamin on Selective Internal Organs of male Sprague-Dawley rats. Hindawi J Toxicol 2019:6493286

    Google Scholar 

  72. Huang R, Hu J, Qian W, Chen L, Zhang D (2021) Recent advances in nanotherapeutics for the treatment of burn wounds. Burns & Trauma 9:tkab026

    Article  Google Scholar 

  73. Osuntokun J, Onwudiwe DC, Ebenso EE (2019) Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. Italica and the photocatalytic activity. Green Chem Lett Rev 12(4):444–457

    Article  CAS  Google Scholar 

  74. Sandhya J, Kalaiselvam S (2021) UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strains. J Environ Sci Health A 56(8):835–848

    Article  CAS  Google Scholar 

  75. Oraibi AI, Hamad MN (2018) Phytochemical Investigation of Flavanoid of Calotropis Procera in Iraq, isolation and identification of Rutin, Quercitin and Kampferol. J Pharm Sci Res 10(9):2407–2411

    CAS  Google Scholar 

  76. Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas A-H, Jaremko M (2020) Important flavonoids and their role as a therapeutic Agent. Molecules 25:5243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen TLA, Bhattacharya D (2022) Antimicrobial activity of Quercetin: an Approach to its mechanistic Principle. Molecules 27:2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nagoba B, Wadher B, Suryawanshi N, Selkar S (2015) Acidic Environment and Wound Healing. Rev Wounds 27(1):5–11

    Google Scholar 

  79. El-Kased RF, Amer RI, Attia D, Elmazar MM (2017) Honey-based hydrogel: in vitro and comparative in vivo evaluation for burn wound healing. Sci Rep 7(1):9692

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liang Y, Wang M, Zhang Z, Ren G, Liu Y, Wu S, Shen J (2019) Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced Wound Healing. Chem Eng J 378:122043

    Article  CAS  Google Scholar 

  81. Zhai M, Xu Y, Zhou B, Jing W (2018) Keratin-chitosan/n-ZnO nanocomposite hydrogel for antimicrobial treatment of burn wound healing: characterization and biomedical application. J Photochem Photobiol B 180:253–258

    Article  CAS  PubMed  Google Scholar 

  82. Sung T, Wang Y, Liu K, Chou C, Lai P, Hsieh C (2020) Pholiota nameko Polysaccharides Promotes Cell Proliferation and Migration and Reduces ROS Content in H2O2-Induced L929 Cells.Antioxidants9(65)

  83. Hassan A, Elebeedy D, Matar ER, Fahmy Mohamed Elsayed A, Abd El Maksoud AI (2021) Investigation of Angiogenesis and Wound Healing potential mechanisms of Zinc Oxide Nanorods. Front Pharmacol 12:661217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rahman MA, Islam MS, Haque P et al (2020) Calcium ion mediated rapid wound healing by nano-ZnO doped calcium phosphate-chitosan-alginate biocomposites. Materialia 13:100839

    Article  CAS  Google Scholar 

  85. Bui Vu, Park D, Lee YC (2017) Chitosan Combined with ZnO, TiO2 and ag nanoparticles for Antimicrobial Wound Healing applications: a Mini Review of the Research Trends. Polymers 9(12):21

    Article  PubMed  Google Scholar 

  86. Venkataprasanna KS, Prakash J, Vignesh S, Bharath G, Venkatesan M, Banat F, Sahabudeen S, Ramachandran S, Devanand Venkatasubbu G (2019) Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. Int J Biol Macromol 143:744–762

    Article  PubMed  Google Scholar 

  87. Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y, Hou R, Xu L, Wu S (2021) Chitosan-Based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol 9:650598

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hassan M, Sulaiman M, Yuvaraju PD, Galiwango E, Rehman I, Al-Marzouqi AH, Khaleel A, Mohsin S (2022) Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. J Funct Biomaterials 13:13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Sains Malaysia for sponsoring this work under Research University Grant (RUI) EKSESAIS TAHUN 2019 (1001/CIPPT/8012338). The support of all the technical staff of Animal Research and Service Centre (ARASC-Mrs. Adilah Abdul Khalil team), Advanced Medical and Dental Institute (AMDI) and School of Materials and Mineral Resources Engineering (SMMRE), Universiti Sains Malaysia, Pulau Pinang, Malaysia, in the characterization of the sample is also acknowledged.

Funding

This research was funded by the Research University Grant (RUI) EKSESAIS TAHUN 2019 (1001/CIPPT/8012338) from Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Rabiatul Basria S. M. N. Mydin is the principal investigator who contributed in the concept, idea, experimental design, and writing process and gave final approval of this paper for publication. G Ambarasan Govindasamy carried out all experimental works and prepared the original manuscript. Nasrin K Ramtan Gadaime assisted in animal monitoring work. Srimala Sreekantan guides in the material characterization procedures. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Rabiatul Basria S. M. N. Mydin.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindasamy, G.A., S. M. N. Mydin, R.B., Gadaime, N.K.R. et al. Phytochemicals, Biodegradation, Cytocompatibility and Wound Healing Profiles of Chitosan Film Embedded Green Synthesized Antibacterial ZnO/CuO Nanocomposite. J Polym Environ 31, 4393–4409 (2023). https://doi.org/10.1007/s10924-023-02902-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02902-1

Keywords

Navigation