Skip to main content
Log in

A Novel Study on Anionic Surfactant Degradation Potential of Psychrophillic and Psychrotolerant Pseudomonas spp. Identified from Surfactant-contaminated River Water

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Yamuna River, a tributary of the holy Ganga, is heavily polluted in the Delhi-NCR region, India and has been gaining attention due to the excessive foaming of the river over the past few years. This can be directly or indirectly related to the overuse of surfactants and the discharge of untreated domestic and textile wastewater into the river. To determine the surfactant load and investigate potential surfactant-degrading bacteria in the region, 96 water samples from four sites in the Okhla Barrage stretch of the river were collected and analysed. The results showed that the selected sites have surfactant concentrations more than the permissible limit (1.00 mgL−1). Also, at most of the sites, the concentration crossed the desirable limit of BIS (0.2 mgL−1) during the period of analysis. The concentration of anionic surfactant reported in the region was found in the range of 0.29 mgL−1 and 2.83 mgL−1. A total of 38 different bacteria were isolated using selective media from the same water samples, out of which 7 bacterial isolates were screened for sodium dodecyl sulphate (SDS) tolerance activity. Based on 16S rRNA gene sequencing, 2 species, namely Pseudomonas koreensis YRW-02 and Pseudomonas songnenensis YRW-05 have been identified and their degradation potential was assessed at different SDS concentrations. The results showed that our strains YRW-02 and YRW-05 degraded 78.29 and 69.24% of SDS respectively. Growth optimization was also performed at different substrate concentrations, pH, and temperature to investigate optimum degradation conditions. This study plays a significant role in assessing the surfactant load and also gives a promising background for future use in in-situ bioremediation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data pertaining to this manuscript has been included in the manuscript.

References

  1. Abdel-Megeed, A. (2013). Potential degradation of certain alkanes by Pseudomonas frederiksbergensis. J Pure Appl Microbiol, 7(3), 13–21.

    CAS  Google Scholar 

  2. APHA. (1998). Standard methods for examination of water and wastewater. American Public Health Association.

    Google Scholar 

  3. Arif, M., Kumar, R., & Parveen, S. (2020). Reduction in water pollution in Yamuna River due to lockdown under covid-19 pandemic. https://doi.org/10.26434/chemrxiv.12440525.v1

  4. Arora, J., Ranjan, A., Chauhan, A., Biswas, R., Rajput, V. D., Sushkova, S., Mandzhieva, S., Minkina, T., & Jindal, T. (2022). Surfactant pollution, an emerging threat to ecosystem: Approaches for effective bacterial degradation. Journal of Applied Microbiology, 133(3), 1229–1244. https://doi.org/10.1111/jam.15631

    Article  CAS  PubMed  Google Scholar 

  5. Asim, M., & Nageswara Rao, K. (2021). Assessment of heavy metal pollution in Yamuna River, Delhi-NCR, using Heavy Metal Pollution Index and GIS. Environmental Monitoring and Assessment, 193(2). https://doi.org/10.1007/s10661-021-08886-6

  6. Bhardwaj, R., Gupta, A., & Garg, J. (2017). Evaluation of Heavy Metal Contamination using environmetrics and indexing approach for river Yamuna, Delhi Stretch, India. Water Science, 31(1), 52–66. https://doi.org/10.1016/j.wsj.2017.02.002

    Article  Google Scholar 

  7. Biswas, P., & Vellanki, B. P. (2021). Occurrence of emerging contaminants in highly anthropogenically influenced river Yamuna in India. Science of The Total Environment, 782, 146741. https://doi.org/10.1016/j.scitotenv.2021.146741

    Article  CAS  PubMed  Google Scholar 

  8. Bowes, M. J., Read, D. S., Joshi, H., Sinha, R., Ansari, A., Hazra, M., Simon, M., Vishwakarma, R., Armstrong, L. K., Nicholls, D. J., Wickham, H. D., Ward, J., Carvalho, L. R., & Rees, H. G. (2020). Nutrient and microbial water quality of the Upper Ganga River, India: Identification of Pollution Sources. Environmental Monitoring and Assessment, 192(8). https://doi.org/10.1007/s10661-020-08456-2

  9. Brief on the Yamuna: WHAT AILS THE YAMUNA?. (2021). Retrieved 19 October 2022, from https://www.cseindia.org/brief-on-the-yamuna-what-ails-the-yamuna--11059

  10. Bureau of Indian Standards (BIS). (1991). Specification for drinking water 1S:10500: Bureau of Indian Standards, New Delhi

  11. Central Pollution Control Board. (2020). Alternative treatment technologies for wastewater treatment in drains In Compliance to Direction of Hon’ble NGT in the Matter of OA No. 06/2012 Titled Manoj Mishra Vs Union of India & ORS.

  12. Chaturvedi, V., & Kumar, A. (2011). Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi City, India. International Biodeterioration & Biodegradation, 65(7), 961–971. https://doi.org/10.1016/j.ibiod.2011.07.005

    Article  CAS  Google Scholar 

  13. Chauhan, A., & Jindal, T. (2020). Microbiological methods for environment, food and pharmaceutical analysis. Springer Nature.

  14. Chauhan, A., Bharti, P., Goyal, P., Varma, A., & Jindal, T. (2015). Psychrophilic pseudomonas in antarctic freshwater lake at stornes peninsula, larsemann hills over east Antarctica. Springerplus, 4(1). https://doi.org/10.1186/s40064-015-1354-3

  15. CPCB. (1980–1981). The Ganga River—Part I—The Yamuna basin, ADSORBS/2. Delhi: Central Pollution Control Board.

  16. Dehghani, M. H., Zarei, A., & Yousefi, M. (2019). Efficiency of ultrasound for degradation of an anionic surfactant from water: Surfactant determination using methylene blue active substances method. MethodsX, 6, 805–814. https://doi.org/10.1016/j.mex.2019.03.028

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fedeila, M., Hachaïchi-Sadouk, Z., Bautista, L. F., Simarro, R., & Nateche, F. (2018). Biodegradation of anionic surfactants by alcaligenes faecalis, Enterobacter cloacae and serratia marcescens strains isolated from industrial wastewater. Ecotoxicology and Environmental Safety, 163, 629–635. https://doi.org/10.1016/j.ecoenv.2018.07.123

    Article  CAS  PubMed  Google Scholar 

  18. Gentile, G., Bonsignore, M., Santisi, S., Catalfamo, M., Giuliano, L., Genovese, L., Yakimov, M. M., Denaro, R., Genovese, M., & Cappello, S. (2016). Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8 T. Marine Pollution Bulletin, 105(1), 125–130. https://doi.org/10.1016/j.marpolbul.2016.02.041

    Article  CAS  PubMed  Google Scholar 

  19. Ghose, N. C., Saha, D., & Gupta, A. (2009). Synthetic detergents (Surfactants) and organochlorine pesticide signatures in surface water and groundwater of greater kolkata, india. Journal of Water Resource and Protection, 1(4), 290–298. https://doi.org/10.4236/jwarp.2009.14036

    Article  CAS  Google Scholar 

  20. Govarthanan, M., Ameen, F., Kamala-Kannan, S., Selvankumar, T., Almansob, A., Alwakeel, S. S., & Kim, W. (2020). Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: An eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere, 247, 125948. https://doi.org/10.1016/j.chemosphere.2020.125948

    Article  CAS  PubMed  Google Scholar 

  21. Halmi, M. I. E., Hussin, W. S. W., Aqlima, A., Syed, M. A., Ruberto, L. A. M., MacCormack, W. P., & Yukor, M. Y. (2013). Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil.

  22. ISO 7875‐1. (1996). Water quality—determination of surfactants—part 1: determination of anionic surfactants by measurement of the methylene blue index (MBAS).

  23. Ivon, E. A., Ubi, G. M., Etangetuk, N. A., Anyanwu, C. O., Nkang, A. N., & Ekanem, A. P. (2020). Toxic Potentials of Nittol Detergent on Haematological Parameters of African Catfish (Clarias gariepinus) in Nigeria. Annual Research & Review in Biology, 35(4), 53–67.

    Article  Google Scholar 

  24. Jaiswal, M., Hussain, J., Gupta, S. K., Nasr, M., & Nema, A. K. (2019). Comprehensive evaluation of water quality status for entire stretch of Yamuna River, India. Environmental Monitoring and Assessment, 191(4), 1–17.

    Article  CAS  Google Scholar 

  25. John, E. M., Rebello, S., Asok, A. K., & Jisha, M. S. (2015). Pseudomonas plecoglossicida S5, a novel nonpathogenic isolate for sodium dodecyl sulfate degradation. Environmental Chemistry Letters, 13(1), 117–123.

    Article  CAS  Google Scholar 

  26. Kaczerewska, O., Martins, R., Figueiredo, J., Loureiro, S., & Tedim, J. (2020). Environmental behaviour and ecotoxicity of cationic surfactants towards marine organisms. Journal of Hazardous Materials, 392, 122299. https://doi.org/10.1016/j.jhazmat.2020.122299

    Article  CAS  PubMed  Google Scholar 

  27. Khan, A. H., Aziz, H. A., Khan, N. A., Dhingra, A., Ahmed, S., & Naushad, M. (2021). Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River. Science of The Total Environment, 794, 148484. https://doi.org/10.1016/j.scitotenv.2021.148484

    Article  CAS  PubMed  Google Scholar 

  28. Khleifat, K. M. (2006). Biodegradation of sodium lauryl ether sulfate (Sles) by two different bacterial consortia. Current Microbiology, 53(5), 444–448. https://doi.org/10.1007/s00284-006-0266-4

    Article  CAS  PubMed  Google Scholar 

  29. Dziewit, L., & Bartosik, D. (2014). Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00596

  30. Morita, R. Y. (1975). Psychrophilic bacteria. Bacteriological reviews, 39(2), 144–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kishore, S., Malik, S., Shah, M. P., Bora, J., Chaudhary, V., Kumar, L., … Ranjan, A. (2022). A comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology -based solutions. Biotechnology and Genetic Engineering Reviews. https://doi.org/10.1080/02648725.2022.2106014

  32. Kolsal, F., et al. (2017). Hydrocarbon degradation abilities of psychrotolerant bacillus strains. AIMS Microbiology, 3(3), 467–482. https://doi.org/10.3934/microbiol.2017.3.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar, M., Sharif, M., & Ahmed, S. (2019). Impact of urbanization on the river Yamuna Basin. International Journal of River Basin Management, 18(4), 461–475. https://doi.org/10.1080/15715124.2019.1613412

    Article  Google Scholar 

  35. Kumar, A., Ranjan, A., Gulati, K., Thakur, S., & Jindal, T. (2016). Assessment of chemical and microbial contamination in groundwater through leaching of sewage waste in Delhi, India. Environmental Earth Sciences, 75(3). https://doi.org/10.1007/s12665-015-5016-0

  36. Kumar, V., Sahu, P., K. Singh, P., K. Shukla, N., Mishra, D. P., & Markandeya. (2021). Evaluation and quantification of anionic surfactant in the gomti river at lucknow city, india. In I. Ahmed Moujdin & J. Kevin Summers (Eds.), Promising Techniques for Wastewater Treatment and Water Quality Assessment. IntechOpen. https://doi.org/10.5772/intechopen.93517

  37. Kumari, A., Rajput, V. D., Mandzhieva, S. S., Rajput, S., Minkina, T., Kaur, R., … Glinushkin, A. P. (2022). Microplastic pollution: An emerging threat to terrestrial plants and insights into Its remediation strategies. Plants, 11(3). https://doi.org/10.3390/plants11030340

  38. Li, Y., Hu, H., & Wu, Q. (2007). Isolation and characterization of psychrotrophic nitrobenzene-degrading strains from river sediments. Bulletin of Environmental Contamination and Toxicology, 79(3), 340–344. https://doi.org/10.1007/s00128-007-9239-y

    Article  CAS  PubMed  Google Scholar 

  39. M. Abd-Elnaby, H., M. Abou-Elela, G., Hussein, H., A. Ghozlan, H., & A. Sabry, S. (2019). Characterization and Bioremediation potential of marine psychrotolerant Pseudomonas spp. isolated from the Mediterranean Sea, Egypt. Egyptian Journal Of Aquatic Biology And Fisheries, 23(4), 669–683. https://doi.org/10.21608/ejabf.2019.63537

  40. Malik, D., Singh, S., Thakur, J., Singh, R. K., Kaur, A., & Nijhawan, S. (2014). Heavy metal pollution of the Yamuna River: An introspection. International Journal of Current Microbiology and Applied Sciences, 3(10), 856–863.

    Google Scholar 

  41. Markúsdóttir, M., Heiðmarsson, S., Eyþórsdóttir, A., Magnússon, K. P., & Vilhelmsson, O. (2013). The natural and anthropogenic microbiota of Glerá, a sub-arctic river in northeastern Iceland. International Biodeterioration & Biodegradation, 84, 192–203. https://doi.org/10.1016/j.ibiod.2012.04.001

    Article  CAS  Google Scholar 

  42. Miri, S., Rasooli, A., Brar, S. K., Rouissi, T., & Martel, R. (2022). Biodegradation of p-xylene—A comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. Environmental Science and Pollution Research, 29(15), 21465–21479. https://doi.org/10.1007/s11356-021-17387-5

    Article  CAS  PubMed  Google Scholar 

  43. Misra, A. K. (2010). A river about to die: Yamuna. Journal of water resource and protection, 2(5), 489.

    Article  CAS  Google Scholar 

  44. Okpokwasili, G. C., & Olisa, A. O. (1991). River-water biodegradation of surfactants in liquid detergents and shampoos. Water Research, 25(11), 1425–1429. https://doi.org/10.1016/0043-1354(91)90121-6

    Article  CAS  Google Scholar 

  45. Pandey, P., Khillare, P., & Kumar, K. (2011). Assessment of organochlorine pesticide residues in the surface sediments of river Yamuna in Delhi, India. Journal of Environmental Protection, 02(05), 511–524. https://doi.org/10.4236/jep.2011.25059

    Article  CAS  Google Scholar 

  46. Parween, M., Ramanathan, A., & Raju, N. J. (2021). Assessment of toxicity and potential health risk from persistent pesticides and heavy metals along the Delhi stretch of river Yamuna. Environmental Research, 202, 111780. https://doi.org/10.1016/j.envres.2021.111780

    Article  CAS  PubMed  Google Scholar 

  47. Patel, R., & Patel, K. S. (1998). Flow injection determination of anionic surfactants with cationic dyes in water bodies of central India. The Analyst, 123(8), 1691–1695. https://doi.org/10.1039/a802945h

    Article  CAS  Google Scholar 

  48. Rai, R. K., Upadhyay, A., Ojha, C. S., & Singh, V. P. (2011). Water pollution. Water Science and Technology Library, 245–275. https://doi.org/10.1007/978-94-007-2001-5_9

  49. Ramanjulu, C., Naidu, N. V., Kanchi, S., & Bisetty, K. (2015). Seasonal variation and distribution of anionic surfactants in and around Tirupati: a famous pilgrim centre in South India. Asian Journal of Chemistry.

  50. Rathour, R., Gupta, J., Tyagi, B., Kumari, T., & Thakur, I. S. (2018). Biodegradation of pyrene in soil microcosm by Shewanella sp. ISTPL2, a psychrophilic, alkalophilic and halophilic bacterium. Bioresource Technology Reports, 4, 129–136. https://doi.org/10.1016/j.biteb.2018.10.004

    Article  Google Scholar 

  51. Said, S., & Hussain, A. (2019). Pollution mapping of Yamuna River segment passing through Delhi using high-resolution geoeye-2 imagery. Applied Water Science, 9(3). https://doi.org/10.1007/s13201-019-0923-y

  52. Sepehr, S., Shahnavaz, B., Asoodeh, A., & Karrabi, M. (2019). Biodegradation of phenol by cold-tolerant bacteria isolated from alpine soils of Binaloud Mountains in Iran. Journal of Environmental Science and Health, Part A, 54(4), 367–379. https://doi.org/10.1080/10934529.2018.1553818

    Article  CAS  Google Scholar 

  53. Seth, R., Singh, P., Mohan, M., Singh, R., & Aswal, R. S. (2013). Monitoring of phenolic compounds and surfactants in water of Ganga Canal, Haridwar (India). Applied Water Science, 3(4), 717–720. https://doi.org/10.1007/s13201-013-0116-z

    Article  CAS  Google Scholar 

  54. Shahbazi, R., Kasra-Kermanshahi, R., Gharavi, S., Moosavi-Nejad, Z., & Borzooee, F. (2013). Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity. Iranian Journal of Microbiology, 5(2), 153.

    PubMed  PubMed Central  Google Scholar 

  55. Sharma, M. P., Singal, S. K., & Patra, S. (2009). Water quality profile of Yamuna River, India. Hydro Nepal: Journal of Water, Energy and Environment, 3, 19–24. https://doi.org/10.3126/hn.v3i0.1914

    Article  Google Scholar 

  56. Sharma, R., Kumar, R., Satapathy, S. C., Al-Ansari, N., Singh, K. K., Mahapatra, R. P., . . . Pham, B. T. (2020). Analysis of water pollution using different physicochemical parameters: A study of Yamuna River. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.581591

  57. Siddiqui, Z. H., Wattal, R. K., Batchu, H., & Abbas, Z. K. (2020). Assessment of cytotoxic and genotoxic effects of Yamuna River water pollutants in an urban metropolis, Delhi (India). Water Supply, 20(7), 2682–2697. https://doi.org/10.2166/ws.2020.165

    Article  CAS  Google Scholar 

  58. Singh, K. K., & Vaishya, R. C. (2016). Isolation of bacterial isolates from municipal wastewater for bioremediation of anionic surfactants. International Journal of Scientific Progress & Research, 23(3), 181–185.

    CAS  Google Scholar 

  59. Sundararaman, S., Kumar, J. A., Deivasigamani, P., & Devarajan, Y. (2022). Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment–A challenge to water resource management. Science of the Total Environment, 825, 153897.

  60. Thathola, P., Agnihotri, V., Pandey, A., & Upadhyay, S. K. (2022). Biodegradation of bisphenol A using psychrotolerant bacterial strain Pseudomonas palleroniana GBPI_508. Archives of Microbiology, 204(5), 272. https://doi.org/10.1007/s00203-022-02885-y

    Article  CAS  PubMed  Google Scholar 

  61. Verma, S., & Chatterjee, S. (2021). Biodegradation of profenofos, an acetylcholine esterase inhibitor by a psychrotolerant strain Rahnella sp PFF2 and degradation pathway analysis. International Biodeterioration & Biodegradation, 158, 105169. https://doi.org/10.1016/j.ibiod.2020.105169

    Article  CAS  Google Scholar 

  62. Verma, S., Singh, D., & Chatterjee, S. (2021). Malathion biodegradation by a psychrotolerant bacteria Ochrobactrum sp. M1D and metabolic pathway analysis. Letters in Applied Microbiology, 73(3), 326–335. https://doi.org/10.1111/lam.13517

    Article  CAS  PubMed  Google Scholar 

  63. Yeldho, D., Rebello, S., & Jisha, M. (2010). Plasmid-Mediated Biodegradation of the Anionic Surfactant Sodium Dodecyl Sulphate, by Pseudomonas aeruginosa S7. Bulletin Of Environmental Contamination And Toxicology, 86(1), 110–113. https://doi.org/10.1007/s00128-010-0162-2

    Article  CAS  PubMed  Google Scholar 

  64. Yilmaz, F., & Icgen, B. (2014). Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environmental Science and Pollution Research, 21(12), 7413–7424. https://doi.org/10.1007/s11356-014-2653-x

    Article  CAS  PubMed  Google Scholar 

  65. Zargar, A.R. (2019). Hindu festival in India marred by a river of toxic foam and a blanket of killer smog. CBS News, 5th November. Available at: https://www.cbsnews.com/news/yamuna-rivers-toxic-foam-and-delhi-air-pollution-greet-india-hindu-devotees-for-chhath-puja-festival

  66. Zhu, X., Wang, Z., Sun, Y., Gu, L., Zhang, L., Wang, J., Huang, Y., & Yang, Z. (2020). Surfactants at environmentally relevant concentrations interfere the inducible defense of scenedesmus obliquus and the implications for ecological risk assessment. Environmental Pollution, 261, 114131. https://doi.org/10.1016/j.envpol.2020.114131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Founder President of Amity University, Dr. Ashok K Chauhan for his constant support and encouragement. The research was supported by the Strategic Academic Leadership Program of the Southern Federal University ("Priority 2030").

Author information

Authors and Affiliations

Authors

Contributions

JA, AC, AR: Conceptualization; JA, AR, AC: Methodology; JA, AC, AR, SJ, RP: Formal analysis; AC, TJ: Resources; JA, AC, AR: Data curation; JA: Writing-original draft preparation; AB, AR, AC, RB, SJ, RP: Writing-review and editing; VR, SS, EP, TM, SJ, RP: Critical review and editing; AC, AR, RP, TJ: Supervision. All the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Anuj Ranjan or Ram Prasad.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals.

Consent to Participate

All authors agree mutually with the participation and publication of this work and declare that this is original research.

Consent to publish

All authors agree mutually to publication of this work.

Conflict of Interest

The authors report no financial or any other conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, J., Ranjan, A., Chauhan, A. et al. A Novel Study on Anionic Surfactant Degradation Potential of Psychrophillic and Psychrotolerant Pseudomonas spp. Identified from Surfactant-contaminated River Water. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04647-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04647-y

Keywords

Navigation