Skip to main content
Log in

Hepatic Sinusoid Capillarizate via IGTAV/FAK Pathway Under High Glucose

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 30 November 2023

This article has been updated

Abstract

The incidence of diabetic patients with non-alcoholic fatty liver disease (NAFLD) is continuously increasing worldwide. However, the specific mechanisms of NAFLD patients with diabetes are still not clear. Recent studies have indicated that integrins play an important role in NAFLD. In this study, we considered the relationship between integrin αv (IGTAV)/FAK pathway and sinusoidal capillarization. We investigated the difference between the expression of IGTAV, laminin (LN), focal adhesion kinase (FAK), and phosphor-FAK protein in human liver sinusoidal endothelial cells (HLSECs) to explore the specific mechanisms of the diseases of NAFLD with diabetes under high glucose. We cultured and identified the HLSECs and constructed the recombinant lentivirus vector with IGTAV shRNA by quantitative real-time PCR (qRT-PCR) to silence the IGTAV gene. Cells were divided into groups of 25 mmol/L glucose and 25 mmol/L mannitol. We measured the protein levels of IGTAV, LN, FAK, and phosphor-FAK by western blot at 2 h, 6 h, and 12 h before and after IGTAV gene silencing. The lentivirus vector was successfully constructed with IGTAV shRNA. The HLSECs under high glucose were observed by scanning electron microscope. SPSS19.0 was used for statistical analysis. High glucose significantly increased the expression of IGTAV, LN, and phosphor-FAK protein in HLSECs; the shRNA IGTAV could effectively inhibit the expression of phosphor-FAK and LN at 2 h and 6 h. Inhibition of the phosphor-FAK could effectively decrease the expression of LN in HLSECs at 2 h and 6 h under high glucose. Inhibition of IGTAV gene of HLSECs under high glucose could improve hepatic sinus capillarization. Inhibition of IGTAV and phosphor-FAK decreased the expression of LN. High glucose led to hepatic sinus capillarization via IGTAV/ FAK pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable

Change history

Abbreviations

NAFLD:

non-alcoholic fatty liver disease

LSECs:

liver sinusoidal endothelial cells

ECM:

extracellular matrix

LN:

laminin

GPI:

glycosylphosphatidylinositol

FAK:

focal adhesion kinase

IGTAV:

integrin αv

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

fetal bovine serum

HLSECs:

human liver sinusoidal endothelial cells

shRNA:

short hairpin RNA

EDTA:

ethylenediaminetetraacetic acid

cDNA:

complementary DNA

qRT-PCR:

quantitative real-time polymerase chain reaction

2-DDCT:

delta-delta CT

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

RNAi:

RNA interference

References

  1. De Alwis, N. M. W., & Day, C. P. (2008). Non-alcoholic fatty liver disease: The mist gradually clears. Journal of Hepatology, 48, S104–S112.

    Article  PubMed  Google Scholar 

  2. Couvelard, A., Scoazec, J. Y., Dauge, M. C., Bringuier, A. F., Potet, F., & Feldmann, G. (1996). Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood, 87, 4568–4580.

    Article  CAS  PubMed  Google Scholar 

  3. Braet, F., & Wisse, E. (2002). Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comparative Hepatology, 1(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paolillo, M., Serra, M., & Schinelli, S. (2016). Integrins in glioblastoma: Still an attractive target? Pharmacological Research, 113, 55–61.

    Article  CAS  PubMed  Google Scholar 

  5. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    Article  CAS  PubMed  Google Scholar 

  6. Xiong, J., Balcioglu, H. E., & Danen, E. H. (2013). Integrin signaling in control of tumor growth and progression. The International Journal of Biochemistry & Cell Biology, 45, 1012–1015.

    Article  CAS  Google Scholar 

  7. Scales, T. M., & Parsons, M. (2011). Spatial and temporal regulation of integrin signalling during cell migration. Current Opinion in Cell Biology, 23, 562–568.

    Article  CAS  PubMed  Google Scholar 

  8. Oh, J. E., Da, H. J., Kim, H., Kang, H. K., Chung, C. P., Park, W. H., & Min, B. M. (2009). α 3 β 1 integrin promotes cell survival via multiple interactions between 14-3-3 isoforms and proapoptotic proteins. Experimental Cell Research, 315, 3187–3200.

    Article  CAS  PubMed  Google Scholar 

  9. Jain, P., Coisne, C., Enzmann, G., Rottapel, R., & Engelhardt, B. (2010). Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. Journal of Immunology, 184, 7196–7206.

    Article  CAS  Google Scholar 

  10. Roy, S., Ruest, P. J., & Hanks, S. K. (2002). FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation. Journal of Cellular Biochemistry, 84, 377–388.

    Article  PubMed  Google Scholar 

  11. Strömblad, S., & Cheresh, D. A. (1996). Integrins, angiogenesis and vascular cell survival. Chemistry & Biology, 3, 881–885.

    Article  Google Scholar 

  12. Shakado, S., Skaisaka, S., Noguchi, K., et al. (1995). Effects of extracellular matriceson tube formation of cultured rat hepatic sinusoidal endothelial cells. Hepatology, 22, 969–973.

    Article  CAS  PubMed  Google Scholar 

  13. Hynes, R. O. (1987). Interins: A family of cell surface receptors. Cell, 48(4), 549–554.

    Article  CAS  PubMed  Google Scholar 

  14. Yong-Su, H., Ok-Sun, B., Eun-Jung, J., Jae-Han, P., Jong-Kyung, S., & Shin-Sung, K. (2004). High dose of glucose promotes chondrogenesis via PKCα and MAPK signaling pathways in chick mesenchymal cells. Cell and Tissue Research, 318, 571–578.

    Article  Google Scholar 

  15. Parsons, J. T. (2003). Focal adhesion kinase: The first ten years. Journal of Cell Science, 116, 1409–1416.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: In command and control of cell motility. Nature Reviews Molecular Cell Biology, 6, 56–68.

    Article  CAS  PubMed  Google Scholar 

  17. Daneker, G. W., Lund, S. A., Caughman, S. W., Swerlick, R. A., Fischer, A. H., Staley, C. A., & Ades, E. W. (1998). Culture and characterization of sinusoidal endothelial cells isolated from human liver. In Vitro Cellular & Developmental Biology - Animal, 34, 370–377.

    Article  CAS  Google Scholar 

  18. Zhang, Q., Liu, J., Liu, J., Huang, W., Tian, L., Quan, J., Wang, Y., & Niu, R. (2014). oxLDL induces injury and defenestration of human liver sinusoidal endothelial cells via LOX1. Journal of Molecular Endocrinology, 53, 281–293.

    Article  CAS  PubMed  Google Scholar 

  19. Ross, R. S. (2004). Molecular and mechanical synergy: Cross-talk between integrins and growth factor receptors. Cardiovascular Research, 63, 381–390.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, F., Howlader, M. A., & Cairo, C. W. (2016). Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1861, 1170–1179.

    Article  CAS  PubMed  Google Scholar 

  21. Li, J., Chen, H., Xu, Y., Hu, J., Xie, F. Q., & Yang, C. (2016). Integrin endocytosis on elastic substrates mediates mechanosensing. Journal of Biomechanics, 49, 2644–2654.

    Article  PubMed  Google Scholar 

  22. Hu, L., Wang, J., Wang, Y., & Xu, H. (2016). An integrin αvβ3 antagonistic modified peptide inhibits tumor growth through inhibition of the ERK and AKT signaling pathways. Oncology Reports, 36, 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  23. Duperret, E. K., Dahal, A., & Ridky, T. W. (2015). Focal-adhesion-independent integrin-αv regulation of FAK and c-Myc is necessary for 3D skin formation and tumor invasion. Journal of Cell Science, 128, 3997–4013.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji, S., Zheng, Y., Shao, G., Zhou, Y., & Liu, S. (2013). Integrin αvβ3-targeted radiotracer 99mTc-3P-RGD2 useful for noninvasive monitoring of breast tumor response to antiangiogenic linifanib therapy but not anti-integrin αvβ3 RGD2 therapy. Theranostics, 3, 816–830.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, L., & Zou, W. (2015). Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Molecular Medicine Reports, 12, 7869–7876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beier, J. I., Guo, L., Ritzenthaler, J. D., Joshibarve, S., Roman, J., & Arteel, G. E. (2016). Fibrin-mediated integrin signaling plays a critical role in hepatic regeneration after partial hepatectomy in mice. Annals of Hepatology, 15, 762–772.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sens, C., Altrock, E., Rau, K., Klemis, V., Von, A. A., Pettera, S., Uebel, S., Damm, T., Tiwari, S., & Moser, M. (2017). An O-glycosylation of fibronectin mediates hepatic osteodystrophy through α4β1 integrin. Journal of Bone and Mineral Research, 32, 70–81.

    Article  CAS  PubMed  Google Scholar 

  28. Abplanalp, W. T., Conklin, D. J., Cantor, J. M., Ginsberg, M. H., Wysoczynski, M., Bhatnagar, A., & O'Toole, T. E. (2016). Enhanced integrin α4β1-mediated adhesion contributes to a mobilization defect of endothelial progenitor cells in diabetes. Diabetes, 65, 3505–3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jing, L., Quan, J., Jing, F., Qi, Z., Xu, Y., Jia, L., Huang, W., Liu, J., & Tian, L. (2016). High glucose regulates LN expression in human liver sinusoidal endothelial cells through ROS/integrin αvβ3 pathway. Environmental Toxicology and Pharmacology, 42, 231–236.

    Article  Google Scholar 

  30. Ying, R. S., Zhu, C., Fan, X. G., Li, N., Tian, X. F., Liu, H. B., & Zhang, B. X. (2007). Hepatitis B virus is inhibited by RNA interference in cell culture and in mice. Antiviral Research, 73, 24–30.

    Article  CAS  PubMed  Google Scholar 

  31. George, J., & Tsutsumi, M. (2007). siRNA-mediated knockdown of connective tissue growth factor prevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Therapy, 14, 790–803.

    Article  CAS  PubMed  Google Scholar 

  32. Castanotto, D., & Rossi, J. J. (2009). The promises and pitfalls of RNA-interference-based therapeutics. Nature, 457, 426–433.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Du, J., Guo, X., Gao, S., Luo, J., Gong, X., Hao, C., Bo, Y., Tong, L., Shao, J., & Cong, G. (2014). Induction of protection against foot-and-mouth disease virus in cell culture and transgenic suckling mice by miRNA targeting integrin αv receptor. Journal of Biotechnology, 187, 154–161.

    Article  CAS  PubMed  Google Scholar 

  34. Vicentemanzanares, M., Choi, C. K., & Horwitz, A. R. (2009). Integrins in cell migration - The actin connection. Journal of Cell Science, 122, 199–206.

    Article  CAS  PubMed  Google Scholar 

  35. Cao, F. Y., Zhou, X. P., Su, J., Yang, X. H., Mu, F. H., Shen, J. Y., & Sun, W. (2016). Chemical structure characteristics and bioactivity of small moleCule FAK inhibitors. Anti-Cancer Agents in Medicinal Chemistry, 16, 934–941.

    Article  CAS  PubMed  Google Scholar 

  36. de Luo, Y., Wazir, R., Tian, Y., Yue, X., Wei, T. Q., & Wang, K. J. (2013). Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. The Journal of Urology, 190, 1421–1429.

    Article  CAS  PubMed  Google Scholar 

  37. Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK–Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Addressed all correspondence and requests for reprints to: Jing Liu, PhD, Department of Endocrinology, Gansu Provincial Hospital, Lanzhou City, Gansu province, China, 730000. Email: yongshen986@163.com.

Funding

This work has been supported by the National Natural Science Foundation of China, (81360131, 81560146, 81660148).

Author information

Authors and Affiliations

Authors

Contributions

 Jia Liu and Hengjiang Gong contributed equally.

Corresponding author

Correspondence to Jing Liu.

Ethics declarations

Ethics Approval

All work has been done under the guidelines of Institutional Ethics Committee.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 2168 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Gong, H., Quan, J. et al. Hepatic Sinusoid Capillarizate via IGTAV/FAK Pathway Under High Glucose. Appl Biochem Biotechnol 196, 1241–1254 (2024). https://doi.org/10.1007/s12010-023-04605-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04605-8

Keywords

Navigation