Skip to main content
Log in

In vitro Propagation of Endemic Species Mahonia Jaunsarensis Ahrendt Through Callus Culture

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract 

Mahonia jaunsarensis Ahrendt (Family Berberidaceae) an endemic species was successfully propagated in vitro. An efficient propagation protocol has been developed first time. The callus cultures were established from leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-Dichlorophenoxyacetic acid (2,4-D; 1 µM) and resulted 70% callus induction with green compact callus. When callus was transferred to MS medium containing Thidiazuron (TDZ; 0.75 µM), maximum average number of shoot (3.06) produced but shoot length (3.37 cm) and average leaf number (2.87) was increased upon transfer to MS medium containing N6-benzylaminopurine (BA; 6.0 µM) plus α-naphthalene acetic acid (NAA; 0.5 µM). In MS medium containing indole-3-butyric acid (IBA; 0.01 µM), the maximum rooting percentage (56%) and average root number (2.56) per shoot and root length (3.33 cm) were recorded. The rooted plantlets transferred in vermiculite + garden soil + farmyard manure (1:1:1) with maximum (55%) survival percentage under greenhouse condition. The phytochemical analysis of leaves obtained from tissue culture-raised plants revealed significantly higher levels of alkaloids (berberine and palmatine) than those obtained from wild plants. Similar trends were observed for antioxidant and antimutagenic activities. Results of this study offer a baseline for the conservation and sustainable utilization strategies for M. jaunsarensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as all the datasets generated during the current study has been presented in the results.

References 

  1. Thusa, R., & Mulmi, S. (2017). Analysis of phytoconstituents and biological activities of different parts of Mahonia nepalensis and Berberis aristata. Nepal Journal of Biotechnology, 5(1), 5–13. https://doi.org/10.3126/njb.v5i1.18864

    Article  Google Scholar 

  2. Li, Y., Ji, X., Liu, H., Yan, Y., & Li, J. (2000). Characterization of 10 species of Mahonia by capillary electrophoresis. Chromatographia, 51(5), 357–361. https://doi.org/10.1007/BF02490617

    Article  CAS  Google Scholar 

  3. Rao, R. R., & Hajra, P. K. (1993). Berberis. In: Sharma BD, et al., editors. Flora of India. Botanical survey of India. Vol. 1. Kolkata, India. pp. 325–404.

  4. Tiwari, U. L., Adhikari, B. S., & Rawat, G. S. (2012). A checklist of berberidaceae in Uttarakhand, Western Himalaya, India. Check List, 8(4), 610–616. https://doi.org/10.15560/8.4.610

    Article  Google Scholar 

  5. Rao, R. R., Husain, T., Datt, B., & Garg, A. (1998). Revision of the Family Berberidaceae of India-II. Rheedea, 8(2), 109–143.

    Google Scholar 

  6. Suyal, R., Bahukhandi, A., Rawal, R. S., & Upadhyay, S. (2020). Polyphenolics and Antioxidant Activity of Mahonia jaunsarensis Ahrendt: A Narrow Endemic to West Himalaya. National Academy Science Letters, 43(6), 505–508. https://doi.org/10.1007/s40009-020-00916-

    Article  CAS  Google Scholar 

  7. Bisht, A., Pandey, A., Bhatt, I. D., & Pandey, V. (2022). Propagation of Mahonia jaunsarensis: An endemic medicinal shrub of Western Himalaya, India. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 156(4), 1050–1055. https://doi.org/10.1080/11263504.2022.2073397

    Article  Google Scholar 

  8. Oseni, O. (2018). A Review on Plant Tissue Culture, A Technique for Propagation and Conservation of Endangered Plant Species. International Journal of Current Microbiology and Applied Sciences, 7. https://doi.org/10.20546/ijcmas.2018.707.438

  9. Patil, S. M., Kumari, V. C., Sumana, K., Sujay, S., Tejaswini, M., Shirahatti, P. S., & Ramu, R. (2021). Sustainable development of plant tissue culture industry: The Indian scenario. Journal of Applied Biology and Biotechnology9(2), 1-7. Journal of Applied Biology & Biotechnology, 9, 18–27. https://doi.org/10.7324/JABB.2021.9202

  10. Benson, E., Danaher, J. E., Pimbley, I. M., Anderson, C. T., Wake, J. E., Daley, S., & Adams, L. K. (2000). In vitro micropropagation of Primula scotica: A rare Scottish plant. Biodiversity and Conservation, 9, 711–726. https://doi.org/10.1023/A:1008941726419

    Article  Google Scholar 

  11. Radha, R. K., Varghese, A., & Sooriamuthu, S. (2013). Conservation through in vitro propagation and restoration of Mahonia leschenaultii, an endemic tree of the Western Ghats. Science Asia, 39, 219. https://doi.org/10.2306/scienceasia1513-1874.2013.39.219

    Article  CAS  Google Scholar 

  12. Rounsaville, T. J., Touchell, D. H., Ranney, T. G., & Blazich, F. A. (2011). Micropropagation of Mahonia ‘Soft Caress’. Horticulture Science, 46(7), 1010–1014. https://doi.org/10.21273/HORTSCI.46.7.1010

    Article  Google Scholar 

  13. Pandey, A., Belwal, T., Tamta, S., Bhatt, I. D., & Rawal, R. S. (2019). Phenolic compounds, antioxidant capacity and antimutagenic activity in different growth stages of in vitro raised plants of Origanum vulgare L. Molecular Biology Reports, 46(2), 2231–2241. https://doi.org/10.1007/s11033-019-04678-x

    Article  CAS  PubMed  Google Scholar 

  14. Belwal, T., Pandey, A., Bhatt, I. D., & Rawal, R. S. (2020). Optimized microwave assisted extraction (MAE) of alkaloids and polyphenols from Berberis roots using multiple-component analysis. Scientific Reports, 10(1), 917. https://doi.org/10.1038/s41598-020-57585-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh, L., Singh, B., Kewlani, P., Belwal, T., Bhatt, I., Nandi, S., & Bisht, A. (2021). Process optimization and bioactive compounds quantification from Dactylorhiza hatagirea tuber for alleviating glycemic and oxidative stress. Journal of Applied Research on Medicinal and Aromatic Plants, 26, 100352. https://doi.org/10.1016/j.jarmap.2021.100352

    Article  CAS  Google Scholar 

  16. Belwal, T., Bisht, A., Bhatt, I. D., & Rawal, R. S. (2015). Influence of seed priming and storage time on germination and enzymatic activity of selected Berberis species. Plant Growth Regulation, 77(2), 189–199. https://doi.org/10.1007/s10725-015-0051-0

    Article  CAS  Google Scholar 

  17. Bisht, A., Giri, L., Belwal, T., Pandey, A., Bahukhandi, A., Bhatt, I., & Rawal, R. S. (2021). In vitro propagation and antioxidant potential of Berberis asiatica from Western Himalaya. Plant Biosystems, 156(2), 490–496. https://doi.org/10.1080/11263504.2021.1887953

    Article  Google Scholar 

  18. Brijwal, L., Pandey, A., & Tamta, S. (2015). In vitro propagation of the endangered species Berberis aristata DC. via leaf-derived callus. In Vitro Cellular & Developmental Biology-Plant, 51(6), 637–647. https://doi.org/10.1007/s11627-015-9716-7

    Article  CAS  Google Scholar 

  19. Pandey, A., Brijwal, L., & Tamta, S. (2013). In vitro propagation and phytochemical assessment of Berberis chitria: An important medicinal shrub of Kumaun Himalaya, India. Journal of Medicinal Plants Research, 7(15), 930–937. https://doi.org/10.5897/JMPR13.4435

    Article  CAS  Google Scholar 

  20. Dhar, S., Sharma, Y. P., & Wakhlu, A. K. (2012). In vitro plant regeneration system for Berberis lycium using cotyledonary node explant. Journal of Tropical Medicinal Plants, 13(1).

  21. Gu, M., Li, Y., Jiang, H., Zhang, S., Que, Q., Chen, X., & Zhou, W. (2022). Efficient In Vitro Sterilization and Propagation from Stem Segment Explants of Cnidoscolus aconitifolius (Mill.) IM Johnst, a Multipurpose Woody Plant. Plants, 11(15), 1937. https://doi.org/10.3390/plants11151937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muñoz-Alcayaga, C., Soto, J., Román-Figueroa, C., & Paneque, M. (2022). Ex Situ Conservation of Atriplex taltalensis IM Johnst via. In Vitro Culturing of Its Axillary Shoots. Diversity15(1). https://doi.org/10.3390/d15010013

  23. Sharma, S., Dhaliwal, H. S., & Sharma, V. (2022). In vitro Micropropagation of Berberis chitria (Lindl.)-A Rare Medicinal Plant from Himachal Pradesh, India. Plant Tissue Culture and Biotechnology, 32(2), 227–236. https://doi.org/10.3329/ptcb.v32i2.63556

    Article  CAS  Google Scholar 

  24. Dobhal, P., Agnihotri, S., Ashfaqullah, S., & Tamta, S. (2022). Effect of salicylic acid elicitor on antioxidant potential and chemical composition of in vitro raised plants of Berberis asiatica Roxb. ex DC. Natural Product Research, 1–8. https://doi.org/10.1080/14786419.2022.2141737

  25. Singh, M., Sonkusale, S., Niratker, C. H., & Shukla, P. (2014). Micropropagation of Shorea robusta: an economically important woody plant. Journal of Forest Science, 60(2), 70–74. https://doi.org/10.17221/80/2013-JFS

    Article  Google Scholar 

  26. Pandey, A., Sekar, K. C., Tamta, S., & Rawal, R. (2017). Assessment of phytochemicals, antioxidant and antimutagenic activity in micropropagated plants of Quercus serrata, a high value tree species of Himalaya. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 152, 1–8. https://doi.org/10.1080/11263504.2017.1395372

  27. Purohit, S., Joshi, K., Rawat, V., Bhatt, I. D., & Nandi, S. K. (2020). Efficient plant regeneration through callus in Zanthoxylum armatum DC: An endangered medicinal plant of the Indian Himalayan region. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(3), 288–294. https://doi.org/10.1080/11263504.2019.1610107

    Article  Google Scholar 

  28. Capuana, M., Nissim, W. G., & Klein, J. D. (2022). Protocol for In Vitro Propagation of Salix acmophylla (Boiss.). Studies on Three Ecotypes. Forests, 13(7), 1124. 26. https://doi.org/10.3390/f13071124

  29. Mishra, J. P., Bhadrawale, D., Yadav, U., Mohammad, N., & Shirin, F. (2018). Effect of various plant growth regulators on in vitro seed germination and shoot organogenesis in Tectona grandis Lf. Tropical Plant Research, 5(2), 152–159. https://doi.org/10.22271/tpr.2018.v5.i2.020

    Article  Google Scholar 

  30. Chirangini, P., Sinha, S. K., & Sharma, G. J. (2005). In vitro propagation and microrhizome induction in Kaempferia galangal Linn. and K. rotunda Linn. Industrial Journal Biotechnology, 4, 404–408.

    Google Scholar 

  31. Karthikeyan, K., Chandran, C., & Kulothungan, S. (2007). Rapid regeneration of Phyllanthus niruri L.from shoot tip and nodal explants. Indian Journal of Applied and Pure Biology, 22, 337–342.

    CAS  Google Scholar 

  32. Sharma, R., Acharjee, S., & Kumar, S. B. (2014). An efficient In vitro regeneration system in lentil (Lens culinaris) using cotyledons with half embryonic axes. Research Journal Biotechnology, 9(1), 9–15.

    CAS  Google Scholar 

  33. Mehta, J., Ansari, R., Syedy, M., Khan, S., Sharma, S., Gupta, N., Rathor, R., & Vaishnav, K. (2012). An effective method for high frequency multiple shoots regeneration and callus induction of Bacopa monnieri (L.) Pennel: An important medicinal plant. Asian Journal of Plant Science, 2(5), 620–626.

    CAS  Google Scholar 

  34. Rawat, J., Rawat, B., Chandra, A., & Nautiyal, S. (2013). Influence of plant growth regulators on indirect shoot organogenesis and secondary metabolite production in Aconitum violaceum Jacq. African journal of Biotechnology, 12, 6287–6293. https://doi.org/10.5897/AJB2013.13390

    Article  CAS  Google Scholar 

  35. Santos, M. R. A., Guimaraes, M. C. M., Paz, E. S., Magalhaes, G. M. O., Souza, C. A., Smozinski, C. V., & Nogueira, W. O. (2016). Induction and growth pattern of callus from Piper permucronatum leaves. Revista Brasileira de Plantas Medicinais, 18, 142–148. https://doi.org/10.1590/1983-084X/15_098

    Article  CAS  Google Scholar 

  36. Tikendra, L., Dey, A., Jamir, I., Manas, Sahoo, M., & Nongdam, P. (2022). Cytokinin influence on in vitro shoot induction and genetic stability assessment of Dendrocalamus latiflorus Munro: a commercially important bamboo in Manipur, North-East India. Vegetos, 3. https://doi.org/10.1007/s42535-022-00392-5

  37. Purohit, S., Joshi, K., Rawat, V., Bhatt, I., & Nandi, S. (2019). Efficient plant regeneration through callus in Zanthoxylum armatum DC: An endangered medicinal plant of the Indian Himalayan region. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 154, 1–7. https://doi.org/10.1080/11263504.2019.1610107

    Article  Google Scholar 

  38. Choudhary, P., & Kataria, V. (2022). In vitro culture in combination with aeroponics is an efficient means of mass propagation of Sarcostemma acidum: A rare medicinal plant of Indian arid zone. In Vitro Cellular & Developmental Biology - Plant. https://doi.org/10.1007/s11627-021-10245-6

    Article  Google Scholar 

  39. Ajoy, K. C., Priyanka, K., & Sunita, K. (2022). In vitro propagation of two commercially important bamboo species (Bambusa tulda Roxb. and Dendrocalamus stocksii Munro.). African Journal of Biotechnology, 21(2), 83–94.

    Google Scholar 

  40. Shahzad, A., Farsal, M., & Anis, M. (2007). Micropropagation through excised shoot culture of Clitoria ternatea and comparison between In vitro regenerated plants and seedlings. Annals of Applied Biology, 150, 341–349. https://doi.org/10.1111/j.1744-7348.2007.00132.x

    Article  CAS  Google Scholar 

  41. Parveen, S., & Shahzad, A. (2010). TDZ induced high frequency shoot regeneration in Cassia sophera L. via cotyledonary nodal explants. Physiology and Molecular Biology of Plants, 16, 201–206. https://doi.org/10.1007/s12298-010-0022-x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Muthukrishnan, S., Kumar, T. S., Gangaprasad, A., Maggi, F., & Rao, M. V. (2018). Phytochemical analysis, antioxidant and antimicrobial activity of wild and in vitro derived plants of Ceropegiath waitesii Hook–An endemic species from Western Ghats, India. Journal of Genetic Engineering and Biotecnology, 16(2), 621–630. https://doi.org/10.1016/j.jgeb.2018.06.003

    Article  CAS  Google Scholar 

  43. Giri, L., Jugran, A., Rawat, S., Dhyani, P., Andola, H., Bhatt, I., Rawal, R. S., & Dhar, U. (2012). In vitro propagation, genetic and phytochemical assessment of Habenaria edgeworthii: An important Astavarga plant. Acta Physiologiae Plantarum, 34, 869–875. https://doi.org/10.1007/s11738-011-0884-8

    Article  Google Scholar 

  44. Largia, J. V., Pandian, S., Shilpha, J., Chitradevi, M., Kavikkuil, M., Sohn, S. I., & Ramesh, M. (2022). Improved in vitro regeneration, genetic fidelity analysis, antioxidant potential, and hairy root induction of Justicia gendarussa Burm. f. Plant Biotechnology Reports. https://doi.org/10.1007/s11816-022-00775-9

    Article  Google Scholar 

  45. Dar, S. A., Nawchoo, I. A., Tyub, S., & Kamili, A. N. (2022). In vitro culture and biochemical and antioxidant potential of the critically endangered medicinal plant Atropa acuminata Royle ex Lindl of Kashmir Himalaya. In Vitro Cellular & Developmental Biology - Plant, 58(4), 540–550. https://doi.org/10.1007/s11627-022-10271-y

    Article  CAS  Google Scholar 

  46. Giri, L., Belwal, T., Bahukhandi, A., Suyal, R., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2017). Oxidative DNA damage protective activity and antioxidant potential of Ashtvarga species growing in the Indian Himalayan Region. Industrial Crops and Products, 102, 173–179. https://doi.org/10.1016/j.indcrop.2017.03.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director of G.B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katramal, Almora, Uttarakhand, India for providing the facilities and encouragement. Colleagues of Centre for Biodiversity Conservation and Mangement (CBCM) are greatly acknowledged for their valuable inputs during the study. We are very grateful to anonymous reviewer for providing key suggestions, which helped us in improving the manuscript during the review process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aseesh Pandey or Indra D. Bhatt.

Ethics declarations

Conflict of Interest

Authors declared that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, A., Singh, L., Singh, B. et al. In vitro Propagation of Endemic Species Mahonia Jaunsarensis Ahrendt Through Callus Culture. Appl Biochem Biotechnol 196, 113–128 (2024). https://doi.org/10.1007/s12010-023-04524-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04524-8

Keywords

Navigation