Skip to main content

Advertisement

Log in

Biodegradation of Phenol Using the Indigenous Rhodococcus pyridinivorans Strain PDB9T NS-1 Immobilized in Calcium Alginate Beads

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phenolic compounds are the major contaminants identified from various industrial effluents, which pose an extreme threat to the environment. Therefore, investigating an effective technique to remove these toxic phenolic compounds from the contaminated environment is very essential. In the present investigation, batch tests were performed to assess the biodegradation of phenol using an indigenous Rhodococcus pyridinivorans strain PDB9T NS-1 encapsulated in a calcium alginate bead system. In order to improve the mechanical stability, silica was added to the cell-embedded Ca-alginate beads. The impact of experimental conditions such as contact time, pH, and initial phenol doses was investigated. The biodegradation of phenol was examined over a wide range of phenol, and the results showed that more than 99.6% degradation was achieved at an initial phenol dose of 1000 mg/L in 70 h at 30 °C. Among the various sorption isotherm tested, the Freundlich isotherm was the best fitted to the experimental data. This behavior indicated a multilayer biosorption process and was controlled by heterogeneous surface energy. Based on an intra-particle diffusion model, internal mass transfer or pore diffusion predominated over exterior mass transfer in controlling the entire phenol biosorption process. The biosorption of phenol onto the cell encapsulated in the Ca-alginate bead follows pseudo-first-order kinetics with a superior phenol biosorption capacity of 155 mg/g of Ca-alginate. Further stability study revealed that the bead could be recycled successfully without any substantial decline in phenol degradation efficiency, indicating that the immobilized microbe possesses exceptional operating stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu, L., Su, J., Huang, T., Li, G., Ali, A., & Shi, J. (2021). Simultaneous removal of nitrate and diethyl phthalate using a novel sponge–based biocarrier combined modified walnut shell biochar with Fe3O4 in the immobilized bioreactor. Journal of Hazardous Materials, 414, 125578. https://doi.org/10.1016/j.jhazmat.2021.125578.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, Y., Su, J., Ali, A., Chang, Q., Bai, Y., & Gao, Z. (2022a). Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. Bioresource Technology, 348, 126818. https://doi.org/10.1016/j.biortech.2022.126818

    Article  CAS  PubMed  Google Scholar 

  3. Barik, M., Das, C. P., Verma, A. K., Sahoo, S., & Sahoo, N. K. (2021). Metabolic profiling of phenol biodegradation by an indigenous Rhodococcus pyridinivorans strain PDB9T N-1 isolated from paper pulp wastewater. International Biodeterioration & Biodegradation, 158, 105168.

    Article  CAS  Google Scholar 

  4. Panigrahy, N., Priyadarshini, A., Sahoo, M. M., Verma, A. K., Daverey, A., & Sahoo, N. K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423.

  5. Priyadarshini, A., Sahoo, M. M., Raut, P. R., Mahanty, B., & Sahoo, N. K. (2021). Kinetic modelling and process engineering of phenolics microbial and enzymatic biodegradation: A current outlook and challenges. Journal of Water Process Engineering, 44, 102421.

    Article  Google Scholar 

  6. Priyadharshini, S. D., & Bakthavatsalam, A. K. (2019). A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant. Journal of Environmental Chemical Engineering, 7(3), 103079.

    Article  Google Scholar 

  7. Mohamed, A., Yousef, S., Nasser, W. S., Osman, T. A., Knebel, A., Sánchez, E. P. V., & Hashem, T. (2020). Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV. Environmental Sciences Europe, 32(1), 1–8.

    Article  Google Scholar 

  8. Wei, X., Gilevska, T., Wetzig, F., Dorer, C., Richnow, H. H., & Vogt, C. (2016). Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis. Environmental Pollution, 210, 166–173.

    Article  CAS  PubMed  Google Scholar 

  9. Zhong, W., Wang, D., & Wang, Z. (2018). Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China. Environmental Pollution, 235, 121–128.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., Chen, A., Chen, B., & Wang, L. (2020). Adsorption of phenol and bisphenol A on river sediments: Effects of particle size, humic acid, pH and temperature. Ecotoxicology and Environmental Safety, 204, 111093.

    Article  CAS  PubMed  Google Scholar 

  11. Acosta, C. A., Pasquali, C. L., Paniagua, G., Garcinuño, R. M., & Hernando, P. F. (2018). Evaluation of total phenol pollution in water of San Martin Canal from Santiago del Estero, Argentina. Environmental Pollution, 236, 265–272.

    Article  CAS  PubMed  Google Scholar 

  12. Khraisheh, M., Al-Ghouti, M. A., & AlMomani, F. (2020). P. putida as biosorbent for the remediation of cobalt and phenol from industrial waste wastewaters. Environmental Technology & Innovation, 20, 101148.

    Article  CAS  Google Scholar 

  13. Qu, Y., Qin, L., Liu, X., & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376.

    Article  CAS  PubMed  Google Scholar 

  14. Sahoo, S. K., Das, A. A., Deka, D., Naik, B., & Sahoo, N. K. (2021). Organic-inorganic hybrid hydroquinone bridged V-CdS/HAP/Pd-TCPP: A novel visible light active photocatalyst for phenol degradation. Journal of Molecular Liquids, 339, 116721.

    Article  CAS  Google Scholar 

  15. Panigrahy, N., Barik, M., Sahoo, R. K., & Sahoo, N. K. (2020). Metabolic profile analysis and kinetics of p-cresol biodegradation by an indigenous Pseudomonas citronellolis NS1 isolated from coke oven wastewater. International Biodeterioration & Biodegradation, 147, 104837.

    Article  CAS  Google Scholar 

  16. Ruan, B., Wu, P., Chen, M., Lai, X., Chen, L., Yu, L., Gong, B., Kang, C., Dang, Z., Shi, Z., & Liu, Z. (2018). Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol–alginate–kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ecotoxicology and Environmental Safety, 162, 103–111. https://doi.org/10.1016/j.ecoenv.2018.06.058.

    Article  CAS  PubMed  Google Scholar 

  17. Youngwilai, A., Kidkhunthod, P., Jearanaikoon, N., Chaiprapa, J., Supanchaiyamat, N., Hunt, A. J., & Siripattanakul-Ratpukdi, S. (2020). Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar. Science of the Total Environment, 713, 136708.

    Article  CAS  PubMed  Google Scholar 

  18. Sahoo, N. K., Pakshirajan, K., & Ghosh, P. K. (2016). Evaluation of 4-chlorophenol biodegradation by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor. Advanced Science Letters, 22(2), 519–523. https://doi.org/10.1166/asl.2016.6843

    Article  Google Scholar 

  19. Li, C., Li, Y., Cheng, X., Feng, L., Xi, C., & Zhang, Y. (2013). Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresource Technology, 131, 390–396.

    Article  CAS  PubMed  Google Scholar 

  20. Tan, L., Li, H., Ning, S., & Xu, B. (2014). Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. Bioresource Technology, 158, 321–328.

    Article  CAS  PubMed  Google Scholar 

  21. Xia, L., Luo, X., Zhu, Y., Zhang, X., & Luo, L. (2019). Effects of CaCl2 freeze-drying and acidic solutions on the reusability of calcium alginate beads; and degradation of phenol by immobilized Acinetobacter sp. PR1. Biochemical Engineering Journal, 151, 107339.

    Article  CAS  Google Scholar 

  22. Barik, M., Das, C. P., Raut, S., Mahanty, B., & Sahoo, N. K. (2022). Effect of culture condition and growth kinetics on phenol biodegradation by an indigenous Rhodococcus pyridinivorans Strain PDB9T NS-1. Geomicrobiology Journal, 39(3-5), 306–315. https://doi.org/10.1080/01490451.2021.1994672

    Article  CAS  Google Scholar 

  23. Bahrami, F., Yu, X., Zou, Y., Sun, Y., & Sun, G. (2020). Impregnated calcium-alginate beads as floating reactors for the remediation of nitrate-contaminated groundwater. Chemical Engineering Journal, 382, 122774. https://doi.org/10.1016/j.cej.2019.122774

    Article  CAS  Google Scholar 

  24. Bajpai, S. K., & Kirar, N. (2016). Swelling and drug release behavior of calcium alginate/poly (sodium acrylate) hydrogel beads. Designed Monomers and Polymers, 19(1), 89–98. https://doi.org/10.1080/15685551.2015.1092016

    Article  CAS  Google Scholar 

  25. Bilici, Z., Işık, Z., Aktaş, Y., Yatmaz, H. C., & Dizge, N. (2019). Photocatalytic effect of zinc oxide and magnetite entrapped calcium alginate beads for azo dye and hexavalent chromium removal from solutions. Journal of Water Process Engineering, 31, 100826. https://doi.org/10.1016/j.jwpe.2019.100826

    Article  Google Scholar 

  26. Fang, L., Xu, Y., Xu, L., Shi, T., Ma, X., Wu, X., Li, Q. X., & Hua, R. (2021). Enhanced biodegradation of organophosphorus insecticides in industrial wastewater via immobilized Cupriavidus nantongensis X1T. Science of The Total Environment, 755, 142505.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, N. S., & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chemical engineering journal, 168(2), 562–571.

    Article  CAS  Google Scholar 

  28. Torres, E., Mata, Y. N., Blázquez, M. L., Munoz, J. A., González, F., & Ballester, A. (2005). Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir, 21(17), 7951–7958.

    Article  CAS  PubMed  Google Scholar 

  29. Shim, J., Lim, J. M., Shea, P. J., & Oh, B. T. (2014). Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads. Journal of Hazardous Materials, 272, 129–136.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez, S. Y., Cantú, M. E., Garcia-Reyes, B., Garza-Gonzalez, M. T., Meza-Escalante, E. R., Serrano, D., & Alvarez, L. H. (2019). Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. Chemosphere, 221, 219–225.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, P., Yuan, L., Zeng, J., Zou, K., Liu, B., Qing, T., & Bo Feng, B. (2022). Alginate production of Pseudomonas strains and its application in preparation of alginate-biomass hydrogel for heavy metal adsorption. International Journal of Biological Macromolecules, 222, 1511–1521. https://doi.org/10.1016/j.ijbiomac.2022.09.252

    Article  CAS  PubMed  Google Scholar 

  32. Li, J., Jia, Y., Zhong, J., Liu, Q., Li, H., & Agranovski, I. (2022). Use of calcium alginate/biochar microsphere immobilized bacteria Bacillus sp. for removal of phenol in water. Environmental Challenges, 9, 100599. https://doi.org/10.1016/j.envc.2022.100599

    Article  CAS  Google Scholar 

  33. Zhao, L., Xiao, D., Liu, Y., Xu, H., & Cao, X. (2020). Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Research, 172, 115494. https://doi.org/10.1016/j.watres.2020.115494

    Article  CAS  PubMed  Google Scholar 

  34. Sahoo, N. K., & Panigrahy, N. (2018). Biodegradation and kinetic study of 4-chlorophenol in bioreactor packed with stabilized bacteria entrapped in calcium alginate beads system. Environmental Processes, 5(2), 287–302.

    Article  CAS  Google Scholar 

  35. Abraham, S. P., Sahoo, N. K., Pakshirajan, K., & Ghosh, P. K. (2012). Batch and column study on 4-cp removal using calcium alginate immobilized Arthrobacter chlorophenolicus A6. International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE), 28, 134–138.

    CAS  Google Scholar 

  36. Zhou, L., Yuan, Y., Li, X., Mei, S., Gao, J., Zhao, Q., Wei, W., & Sun, Y. (2018). Exploration of phenol tolerance mechanism through antioxidative responses of an evolved strain, Chlorella sp. L5. Journal of Applied Phycology, 30(4), 2379–2385.

    Article  CAS  Google Scholar 

  37. Sahoo, N. K., Pakshirajan, K., Ghosh, P. K., & Ghosh, A. (2011). Biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6: Effect of culture conditions and degradation kinetics. Biodegradation, 22(2), 275–286.

    Article  CAS  PubMed  Google Scholar 

  38. Christen, P., Vega, A., Casalot, L., Simon, G., & Auria, R. (2012). Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochemical Engineering Journal, 62, 56–61.

    Article  CAS  Google Scholar 

  39. Haddadi, A., & Shavandi, M. (2013). Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. International Biodeterioration & Biodegradation, 85, 29–34.

    Article  CAS  Google Scholar 

  40. Su, X., Zhou, M., Hu, P., Xiao, Y., Wang, Z., Mei, R., Hashmi, M. Z., Lin, H., Chen, J., & Sun, F. (2019b). Whole-genome sequencing of an acidophilic Rhodotorula sp. ZM1 and its phenol-degrading capability under acidic conditions. Chemosphere, 232, 76–86. https://doi.org/10.1016/j.chemosphere.2019.05.195

    Article  CAS  PubMed  Google Scholar 

  41. Patel, A., Sartaj, K., Arora, N., Pruthi, V., & Pruthi, P. A. (2017). Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast. Journal of Hazardous Materials, 340, 47–56. https://doi.org/10.1016/j.jhazmat.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., & Liu, S. (2016). Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. International Journal of Environmental Research and Public Health, 13, 300. https://doi.org/10.3390/ijerph13030300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xenofontos, E., Tanase, A. M., Stoica, I., & Vyrides, I. (2016). Newly isolated alkalophilic Advenella species bioaugmented in activated sludge for high p-cresol removal. New Biotechnoogyl, 33, 305–310. https://doi.org/10.1016/j.nbt.2015.11.003

    Article  CAS  Google Scholar 

  44. Wu, L., Ali, D. C., Liu, P., Peng, C., Zhai, J., Wang, Y., & Ye, B. (2018). Degradation of phenol via ortho-pathway by Kocuria sp. strain Tibetan4 isolated from the soils around Qinghai lake in China. PLoS One, 13, 0199572. https://doi.org/10.1371/journal.pone.0199572

    Article  CAS  Google Scholar 

  45. Liu, Y., Wang, W., Shah, S. B., Zanaroli, G., Xu, P., & Tang, H. (2020). Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Applied Microbiology and Biotechnology, 104(1), 427–437. https://doi.org/10.1007/s00253-019-10271-w

    Article  CAS  PubMed  Google Scholar 

  46. Covarrubias, S. A., De-Bashan, L. E., Moreno, M., & Bashan, Y. (2012). Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Applied Microbiology and Biotechnology, 93(6), 2669–2680.

    Article  CAS  PubMed  Google Scholar 

  47. Waseem, M., Mustafa, S., Naeem, A., Shah, K. H., & Shah, I. (2011). Mechanism of Cd (II) sorption on silica synthesized by sol–gel method. Chemical Engineering Journal, 169(1-3), 78–83.

    Article  CAS  Google Scholar 

  48. Lu, D., Zhang, Y., Niu, S., Wang, L., Lin, S., Wang, C., Ye, W., & Yan, C. (2012). Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate–chitosan–alginate (ACA) microcapsules by electrochemical method. Biodegradation, 23(2), 209–219.

    Article  CAS  PubMed  Google Scholar 

  49. Sebastian, A., Nangia, A., & Prasad, M. N. V. (2019). Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. Journal of Hazardous Materials, 371, 261–272. https://doi.org/10.1016/j.jhazmat.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  50. Pattanaik, P., Panigrahi, N., Mishra, J., Sahoo, N. K., Dash, B. P., & Rath, D. (2018). Evaluation of MCM-41 nanoparticles for removal of phenol contents from coke-oven wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 22(2), 04018001.

    Article  Google Scholar 

  51. Ramachandran, J., Vivekanandan, S., & Lakshmi, S. (2001). Adsorption behaviour of N-haloarene sulphonamidates on activated carbon at 303 K Indian. Journal of Chemistry, 40(1), 115–118.

    Google Scholar 

  52. Kapnisti, M., Noli, F., Misaelides, P., Vourlias, G., Karfaridis, D., & Hatzidimitriou, A. (2018). Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chemical Engineering Journal, 342, 184–195.

    Article  CAS  Google Scholar 

  53. Park, H., Kim, H., Kim, G. Y., Lee, M. Y., Kim, Y., & Kang, S. (2021). Enhanced biodegradation of hydrocarbons by Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads. Journal of Hazardous Materials, 406, 124752. https://doi.org/10.1016/j.jhazmat.2020.124752

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J., Xie, Y., Hou, J., Zhou, X., Chen, J., Yao, C., Zhang, Y., & Li, Y. (2022b). Biodegradation of bisphenol A by alginate immobilized Phanerochaete chrysosporium beads: Continuous cyclic treatment and degradation pathway analysis. Biochemical Engineering Journal, 177, 108212. https://doi.org/10.1016/j.bej.2021.108212

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

All data generated or analyzed during this study are included in the manuscript. The raw datasets or readings generated during and/or analyzed during the current study but not included in the manuscript are available from the corresponding author upon reasonable request

Funding

The authors acknowledge the financial support received from the Department of Biotechnology, Ministry of Science & Technology, Government of India (SAN No. 102/IFD/SAN/3612/2016-2017), BT/PR15242/BCE/8/1144/2015, for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Ankita Priyadarshini: investigation, methodology, formal analysis, validation, writing – original draft, writing – review and editing

Soumya Mishra: investigation, formal analysis, writing – review and editing

Naresh Kumar Sahoo: conceptualization, visualization, methodology, investigation, supervision, resources, writing – original draft, formal analysis, writing – review and editing, funding acquisition

Sangeeta Raut: conceptualization, visualization, data curation, formal analysis, review and editing

Achlesh Daverey: conceptualization, visualization, data curation, formal analysis, review and editing

Bankim Chandra Tripathy: conceptualization, supervision, visualization, data curation, formal analysis, review and editing

Corresponding author

Correspondence to Naresh Kumar Sahoo.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshini, A., Mishra, S., Sahoo, N.K. et al. Biodegradation of Phenol Using the Indigenous Rhodococcus pyridinivorans Strain PDB9T NS-1 Immobilized in Calcium Alginate Beads. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04508-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04508-8

Keywords

Navigation