Skip to main content

Advertisement

Log in

Phytochemical Analysis and Demonstration of Antioxidant, Antibacterial, and Antibiofilm Activities of Ethnomedicinal Plants of North East India

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ethnomedicinal plants are a rich reservoir of active compounds with potent pharmacological properties. Therefore, plants could serve as a source for the discovery of active antimicrobial and antioxidant agents and are focused because of their low toxicity, economic viability, easy availability, etc. In this regard, phytochemical analyses, viz. β-carotene, total sugar, reducing sugar, vitamin C, total carotenoids, protein, total phenolic content (TPC), and total flavonoid content (TFC) of 20 ethnomedicinal plants of North East India (NEI) were evaluated in this study. The antibacterial activity against human pathogens and antioxidant potential of plant extracts was also demonstrated. The minimum inhibitory concentration (MIC80), minimum bactericidal concentration (MBC), and total antibacterial activity (TAA) of the active extracts were evaluated against Pseudomonas aeruginosa and Chromobacterium violaceum. The active extracts were also examined for antibiofilm as well as anti-pyocyanin activities against P. aeruginosa and anti-QS activity against C. violaceum at sub-MICs. The study demonstrated variable concentration of phytochemicals of the extracts, viz. β-carotene (0.29–8.91 mg g−1), total sugar (2.92–30.6 mM), reducing sugar (0.44–14.5 mM), vitamin C (8.41–31.3 mg g−1), total carotenoids (14.9–267.0 mg g−1), protein (5.65–283 mg g−1), TPC (5.32–31.0 mg GAE/g DW), and TFC (1.74–68.2 mg QE/g DW). The plant extracts also exhibited potent antioxidant and antibacterial activities against both Gram-positive and Gram-negative bacteria. Some of the extracts also demonstrated significant biofilm inhibition and eradication, anti-pyocyanin, and anti-QS activities at sub-MICs. The selected ethnomedicinal plants are rich in phytochemicals and demonstrated potent antioxidant, antibacterial, and antibiofilm activities, thus could serve as the important source of novel antioxidant and antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

TPC:

Total phenolic content

TFC:

Total flavonoid content

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

TAA:

Total antibacterial activity

ROS:

Reactive oxygen species

RSS:

Reactive sulphur species

RNS:

Reactive nitrogen species

ZOI:

Zone of inhibition

QS:

Quorum sensing

BSI:

Botanical Survey of India

DNS:

3,5-Dinitrosalicylic acid

DPPH:

1,1-Diphenyl-2-picryl-hydrazyl assay

TCA:

Trichloroacetic acid

C6-AHL:

Hexonyl homoserine lactone

AHL:

Acyl homoserine lactone

EPS:

Extracellular polymeric substances

References

  1. Raj, A. J., Biswakarma, S., Pala, N. A., Shukla, G., Kumar, M., Chakravarty, S., & Bussmann, R. W. (2018). Indigenous uses of ethnomedicinal plants among forest-dependent communities of Northern Bengal. Journal of Ethnobiology and Ethnomedicine, 14(1), 1–28. https://doi.org/10.1186/s13002-018-0208-9

    Article  Google Scholar 

  2. Faruque, M. O., Uddin, S. B., Barlow, J. W., Hu, S., Dong, S., Cai, Q., Li, X., & Hu, X. (2018). Quantitative ethnobotany of medicinal plants used by indigenous communities in the Bandarban District of Bangladesh. Frontiers in Pharmacology, 9, 40. https://doi.org/10.3389/fphar.2018.00040

    Article  PubMed  PubMed Central  Google Scholar 

  3. Quílez, A. M., Fernández-Arche, M. A., García-Giménez, M. D., & De la Puerta, R. (2018). Potential therapeutic applications of the genus Annona: Local and traditional uses and pharmacology. Journal of Ethnopharmacology, 225, 244–270. https://doi.org/10.1016/j.jep.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  4. Bhat, J. A., Kumar, M., & Bussmann, R. W. (2013). Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. Journal of Ethnobiology and Ethnomedicine, 9(1), 1–18. https://doi.org/10.1186/1746-4269-9-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tlili, H., Hanen, N., Ben Arfa, A., Neffati, M., Boubakri, A., Buonocore, D., Dossena, M., Verri, M., & Doria, E. (2019). Biochemical profile and in vitro biological activities of extracts from seven folk medicinal plants growing wild in southern Tunisia. PLoS ONE, 14(9), e0213049. https://doi.org/10.1371/journal.pone.0213049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ullah, R., Alqahtani, A. S., Noman, O. M., Alqahtani, A. M., Ibenmoussa, S., & Bourhia, M. (2020). A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia. Saudi Journal of Biological Sciences, 27(10), 2706–2718. https://doi.org/10.1016/j.sjbs.2020.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui, X., Lin, Q., & Liang, Y. (2020). Plant-derived antioxidants protect the nervous system from aging by inhibiting oxidative stress. Frontiers in Aging Neuroscience, 12, 209. https://doi.org/10.3389/fnagi.2020.00209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar, M., Pratap, V., Nigam, A. K., Sinha, B. K., Kumar, M., & Singh, J. K. G. (2021). Plants as a source of potential antioxidants and their effective nanoformulations. Journal of Scientific Research, 65(3), 57–72. https://doi.org/10.37398/JSR.2021.650308

    Article  Google Scholar 

  9. Rather, M. A., Gupta, K., & Mandal, M. (2021). Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 52(4), 1701–1718. https://doi.org/10.1007/s42770-021-00624-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mishra, R., Panda, A.K., De Mandal, S., Shakeel, M., Bisht, S.S. and Khan, J. (2020). Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Frontiers in Microbiology 2640. https://doi.org/10.3389/fmicb.2020.566325

  11. Singh, A., Nautiyal, M. C., Kunwar, R. M., & Bussmann, R. W. (2017). Ethnomedicinal plants used by local inhabitants of Jakholi block, Rudraprayag district, western Himalaya, India. Journal of Ethnobiology and Ethnomedicine, 13(1), 1–29. https://doi.org/10.1186/s13002-017-0178-3

    Article  CAS  Google Scholar 

  12. Kumar, M., Devi, H., Prakash, S., Rathore, S., Thakur, M., Puri, S., Pundir, A., Bangar, S. P., Changan, S., Ilakiya, T., & Samota, M. K. (2021). Ethnomedicinal plants used in the health care system: Survey of the mid hills of solan district, Himachal Pradesh, India. Plants, 10(9), 1842. https://doi.org/10.3390/plants10091842

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mao, A. A., Hynniewta, T. M., & Sanjappa, M. (2009). Plant wealth of Northeast India with reference to ethnobotany. Indian j. tradit. knowl., 8(1), 96–103.

    Google Scholar 

  14. Patel, S., Gamit, S., Qureshimatva, U., & Solanki, H. (2019). Distribution patterns of Acmella paniculata (Wall. Ex DC.) RK Jansen in Gujarat, India. International Journal of Research in Advent Technology, 7, 186–191.

    Article  Google Scholar 

  15. Jang, J. Y., Lee, M. J., You, B. R., Jin, J. S., Lee, S. H., Yun, Y. R., & Kim, H. J. (2017). Allium hookeri root extract exerts anti-inflammatory effects by nuclear factor-κB down-regulation in lipopolysaccharide-induced RAW264. 7 cells. BMC Complementary and Alternative Medicine, 17(1), 1–9. https://doi.org/10.1186/s12906-017-1633-3

    Article  CAS  Google Scholar 

  16. Alam, K., Hoq, O., & Uddin, S. (2016). Medicinal plant Allium sativum. A review. Journal of Medicinal Plants Studies, 4(6), 72–79.

    Google Scholar 

  17. Mondal, H., Saha, S., Awang, K., Hossain, H., Ablat, A., Islam, M. K., Jahan, I. A., Sadhu, S. K., Hossain, M. G., Shilpi, J. A., & Uddin, S. J. (2014). Central-stimulating and analgesic activity of the ethanolic extract of Alternanthera sessilis in mice. BMC Complementary and Alternative Medicine, 14(1), 1–9. https://doi.org/10.1186/1472-6882-14-398

    Article  CAS  Google Scholar 

  18. Khanongnuch, C., Unban, K., Kanpiengjai, A., & Saenjum, C. (2017). Recent research advances and ethno-botanical history of miang, a traditional fermented tea (Camellia sinensis var. assamica) of northern Thailand. Journal of Ethnic Foods, 4(3), 135–144. https://doi.org/10.1016/j.jef.2017.08.006

    Article  Google Scholar 

  19. Boldrin, P. K., Resende, F. A., Höhne, A. P. O., de Camargo, M. S., Espanha, L. G., Nogueira, C. H., Melo, M. D. S. F., Vilegas, W., & Varanda, E. A. (2013). Estrogenic and mutagenic activities of Crotalaria pallida measured by recombinant yeast assay and Ames test. BMC Complementary and Alternative Medicine, 13(1), 1–10. https://doi.org/10.1186/1472-6882-13-216

    Article  Google Scholar 

  20. Kviecinski, M. R., David, I. M. B., Fernandes, F. D. S., Correa, M. D. R., Clarinda, M. M., Freitas, A. F., Silva, J. D., Gava, M., Müller, S. D., Florentino, D., & Petronilho, F. (2017). Healing effect of Dillenia indica fruit extracts standardized to betulinic acid on ultraviolet radiation-induced psoriasis-like wounds in rats. Pharmaceutical Biology, 55(1), 641–648. https://doi.org/10.1080/13880209.2016.1266672

    Article  CAS  PubMed  Google Scholar 

  21. Semwal, P., Painuli, S., Painuli, K. M., Antika, G., Tumer, T. B., Thapliyal, A., Setzer, W. N., Martorell, M., Alshehri, M. M., Taheri, Y., & Daştan, S. D. (2021). Diplazium esculentum (Retz.) Sw.: ethnomedicinal, phytochemical, and pharmacological overview of the Himalayan ferns. Oxidative Medicine and Cellular Longevity, 2021, 1–15. https://doi.org/10.1155/2021/1917890

    Article  CAS  Google Scholar 

  22. Hannah, L., Aguilar, G., & Blanchon, D. (2019). Spatial distribution of the Mexican daisy, Erigeron karvinskianus, in New Zealand under climate change. Climate, 7(2), 24. https://doi.org/10.3390/cli7020024

    Article  Google Scholar 

  23. Chrystomo, L.Y., Karim, A.K., Nugroho, L.H., Wahyuono, S. and Nohno, T. (2012). Antiproliferative effect of Eupatorium riparium Reg. leaves benzene extract against C2C12 and MKN45 cell line in vitro. International Conference: Research and Application on Traditional Complementary and Alternative Medicine in Health Care (TCAM) June, 22nd -23rd 2012 Surakarta Indonesia, pp 127–132. http://hdl.handle.net/11617/2426

  24. Baruah, S., Barman, P., Basumatary, S., & Bhuyan, B. (2021). Diversity and ethnobotany of genus Garcinia L (Clusiaceae) in Assam. Eastern Himalaya. Ethnobotany Research and Applications, 21(1), 1–14. https://doi.org/10.32859/era.21.33

    Article  Google Scholar 

  25. Bora, N. S., Kakoti, B. B., Bairy, P. S., & Gogoi, B. (2014). Garcinia lanceifolia Roxb; an endemic medicinal plant of assam relieves pain and delays nociceptive response: An assay for its analgesic and anti-inflammatory activity. International Journal of Pharmaceutical Sciences and Drug Research, 6(3), 216–219.

    Google Scholar 

  26. Chung, M. S., Bae, W. J., Choi, S. W., Lee, K. W., Jeong, H. C., Bashraheel, F., Jeon, S. H., Jung, J. W., Yoon, B. I., Kwon, E. B., & Oh, H. A. (2017). An Asian traditional herbal complex containing Houttuynia cordata Thunb, Perilla frutescens Var. acuta and green tea stimulates hair growth in mice. BMC Complementary and Alternative Medicine, 17(1), 1–11. https://doi.org/10.1186/s12906-017-2003-x

    Article  CAS  Google Scholar 

  27. Wang, J.H., Bose, S., Shin, N.R., Chin, Y.W., Choi, Y.H. and Kim, H. (2018). Pharmaceutical impact of Houttuynia Cordata and metformin combination on high-fat-diet-induced metabolic disorders: Link to intestinal microbiota and metabolic endotoxemia. Frontiers in Endocrinology 620. https://doi.org/10.3389/fendo.2018.00620

  28. Manvar, M. N., & Desai, T. R. (2013). Phytochemical and pharmacological profile of Ipomoea aquatica. Indian Journal of Medical Sciences, 67, 1–12. https://doi.org/10.4103/0019-5359.121115

    Article  Google Scholar 

  29. Varma, R. S., Ashok, G., Vidyashankar, S., Patki, P., & Nandakumar, K. S. (2011). Ethanol extract of Justicia gendarussa inhibits lipopolysaccharide stimulated nitric oxide and matrix metalloproteinase-9 expression in murine macrophage. Pharmaceutical Biology, 49(6), 648–652. https://doi.org/10.3109/13880209.2010.527993

    Article  PubMed  Google Scholar 

  30. Sheam, M., Haque, Z., & Nain, Z. (2020). Towards the antimicrobial, therapeutic and invasive properties of Mikania micrantha Knuth: a brief overview. Journal of Advanced Biotechnology and Experimental Therapeutics, 3(2), 92–101. https://doi.org/10.5455/jabet.2020.d112

  31. Badwaik, H., Singh, M. K., Thakur, D., Giri, T. K., & Tripathi, D. K. (2011). The botany, chemistry, pharmacological and therapeutic application of Oxalis corniculata Linn-a review. International Journal of Phytomedicine, 3(1), 01.

    CAS  Google Scholar 

  32. Junejo, J. A., Zaman, K., Rudrapal, M., & Hussain, N. (2020). Antidiabetic and antioxidant activity of hydro-alcoholic extract of Oxalis debilis Kunth. leaves in experimental rats. Bioscience Biotechnology Research Communications, 13, 860–867.

    Article  Google Scholar 

  33. Tynsong, H., Dkhar, M., & Tiwari, B. K. (2013). Domestication, conservation, and livelihoods: A case study of piper peepuloides roxb.—An important nontimber forest product in South Meghalaya, Northeast India. International Journal of Biodiversity, 2013, 1–7. https://doi.org/10.1155/2013/987914

    Article  Google Scholar 

  34. Islam, S. M. A., Ahmed, K. T., Manik, M. K., Wahid, M. A., & Kamal, C. S. I. (2013). A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis. Asian Pacific Journal of Tropical Biomedicine, 3(9), 682–691. https://doi.org/10.1016/S2221-1691(13)60139-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rather, M. A., Deori, P. J., Gupta, K., Daimary, N., Deka, D., Qureshi, A., Dutta, T. K., Joardar, S. N., & Mandal, M. (2022). Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Chemosphere, 300, 134497. https://doi.org/10.1016/j.chemosphere.2022.134497

    Article  CAS  PubMed  Google Scholar 

  36. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  37. Miller, E. V., Winston, J. R., & Schomer, H. A. (1940). Physiological studies of plastid pigments in rinds of maturing oranges. Journal of Agricultural Research, 60, 259–267.

    CAS  Google Scholar 

  38. AOAC. (2019). International Official Methods of Analysis. 21st Edition. Available online: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/. Accessed March 2022

  39. Biswas, A. K., Sahoo, J., & Chatli, M. K. (2011). A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT - Food Sci. Technol., 44(8), 1809–1813. https://doi.org/10.1016/j.lwt.2011.03.017

    Article  CAS  Google Scholar 

  40. de Carvalho, L. M. J., Gomes, P. B., de Oliveira Godoy, R. L., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., Nutti, M. R., Neves, A. C. L., Vieira, A. C. R. A. & Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040

  41. Classics Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. J. boil. Chem., 193(1), 265–275.

    Article  Google Scholar 

  42. Kara, M., Assouguem, A., Fadili, M. E., Benmessaoud, S., Alshawwa, S. Z., Kamaly, O. A., Saghrouchni, H., Zerhouni, A. R., & Bahhou, J. (2022). Contribution to the evaluation of physicochemical properties, total phenolic content, antioxidant potential, and antimicrobial activity of vinegar commercialized in Morocco. Molecules, 27(3), 770. https://doi.org/10.3390/molecules27030770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. González-Palma, I., Escalona-Buendía, H. B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V. K., Díaz-Godínez, G., & Soriano-Santos, J. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology, 7, 1099. https://doi.org/10.3389/fmicb.2016.01099

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rather, M. A., Gupta, K., & Mandal, M. (2021). Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) JF Macbr. leaf extract: an in vitro study. Journal of Ethnopharmacology., 269, 113699. https://doi.org/10.1016/j.jep.2020.113699

    Article  CAS  PubMed  Google Scholar 

  45. Famuyide, I. M., Aro, A. O., Fasina, F. O., Eloff, J. N., & McGaw, L. J. (2019). Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1), 1–13. https://doi.org/10.1186/s12906-019-2547-z

    Article  CAS  Google Scholar 

  46. Singh, V. K., Mishra, A., & Jha, B. (2017). Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7, 337. https://doi.org/10.3389/fcimb.2017.00337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Das, A., Das, M. C., Sandhu, P., Das, N., Tribedi, P., De, U. C., Akhter, Y., & Bhattacharjee, S. (2017). Antibiofilm activity of Parkia javanica against Pseudomonas aeruginosa: A study with fruit extract. RSC Advances, 7(9), 5497–5513. https://doi.org/10.1039/C6RA24603F

    Article  CAS  Google Scholar 

  48. Moradi, F., Hadi, N., & Bazargani, A. (2020). Evaluation of quorum-sensing inhibitory effects of extracts of three traditional medicine plants with known antibacterial properties. New microbes new infect, 38, 100769. https://doi.org/10.1016/j.nmni.2020.100769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Preetha, T. S., Anju, S., Anilkumar, S., & Mini, I. (2018). Nutritional analysis of selected species of Alternanthera Forsskal (Amaranthaceae). Indian Journal of Experimental Biology, 56(1), 48–53.

    CAS  Google Scholar 

  50. Ayam, V. S. (2011). Allium hookeri, Thw. Enum. A lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. African Journal of Food, Agriculture, Nutrition and Development, 11(6). https://doi.org/10.18697/ajfand.47.9330

  51. Choudhury, J., Majumdar, S., Roy, S. and Chakraborty, U. (2017). Antioxidant activity and phytochemical screening of two edible wetland pteridophytes Diplazium esculentum (Retz) Sw and Marsilea minuta L.–a comparative study. World Journal of Pharmaceutical and Medical 3(9), 195–203.

  52. Devi, O. A., Das, M., Saikia, A., & Das, P. (2016). AJHS. Asian Journal of Home Science, 11(1), 127–135.

    Article  Google Scholar 

  53. Fiedor, J., Fiedor, L., Haeßner, R., & Scheer, H. (2005). Cyclic endoperoxides of β-carotene, potential pro-oxidants, as products of chemical quenching of singlet oxygen. Biochimica et Biophysica Acta – Bioenergetics, 1709(1), 1–4. https://doi.org/10.1016/j.bbabio.2005.05.008

    Article  CAS  Google Scholar 

  54. Ukil, S., Laskar, S., & Bandyopadhyay, D. (2017). Isolation, purification and partial characterization of Crotalaria pallida Aiton seed proteins. International Journal of Peptide Research and Therapeutics, 23(4), 461–467. https://doi.org/10.1007/s10989-017-9578-4

    Article  CAS  Google Scholar 

  55. Singh, G., Passsari, A. K., Leo, V. V., Mishra, V. K., Subbarayan, S., Singh, B. P., Kumar, B., Kumar, S., Gupta, V. K., Lalhlenmawia, H., & Nachimuthu, S. K. (2016). Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Frontiers in Plant Science, 7, 407. https://doi.org/10.3389/fpls.2016.00407

    Article  PubMed  PubMed Central  Google Scholar 

  56. Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12(1), 1–12. https://doi.org/10.1186/1472-6882-12-221

    Article  CAS  Google Scholar 

  57. Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants., 8(4), 96. https://doi.org/10.3390/plants8040096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chavan, J. J., Gaikwad, N. B., Kshirsagar, P. R., & Dixit, G. B. (2013). Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. South+A1443 African Journal of Botany, 88, 273–277. https://doi.org/10.1016/j.sajb.2013.08.007

    Article  CAS  Google Scholar 

  59. Elisha, I. L., Botha, F. S., McGaw, L. J., & Eloff, J. N. (2017). The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complementary and Alternative Medicine, 17(1), 1–10. https://doi.org/10.1186/s12906-017-1645-z

    Article  CAS  Google Scholar 

  60. Rather, M. A., Gupta, K., Bardhan, P., Borah, M., Sarkar, A., Eldiehy, K. S., Bhuyan, S., & Mandal, M. (2021). Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, 61(5), 380–395. https://doi.org/10.1002/jobm.202000678

    Article  PubMed  Google Scholar 

  61. El-Sayed, N. R., Samir, R., Abdel-Hafez, J. M., & Ramadan, M. A. (2020). Olive leaf extract modulates quorum sensing genes and biofilm formation in multi-drug resistant Pseudomonas aeruginosa. Antibiotics, 9(9), 526. https://doi.org/10.3390/antibiotics9090526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alam, K., Al Farraj, D. A., Mah-e-Fatima, S., Yameen, M. A., Elshikh, M. S., Alkufeidy, R. M., Mustafa, A. E. Z. M., Bhasme, P., Alshammari, M. K., Alkubaisi, N. A., & Abbasi, A. M. (2020). Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. Journal of Infection and Public Health, 13(11), 1734–1741. https://doi.org/10.1016/j.jiph.2020.07.007

    Article  PubMed  Google Scholar 

  63. Kalia, V. C., Patel, S. K., Kang, Y. C., & Lee, J. K. (2019). Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnology Advances, 37(1), 68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  64. Kalia, V. C., Gong, C., Patel, S. K., & Lee, J. K. (2021). Regulation of plant mineral nutrition by signal molecules. Microorganisms., 9(4), 774. https://doi.org/10.3390/microorganisms9040774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Parasuraman, P., Devadatha, B., Sarma, V. V., Ranganathan, S., Ampasala, D. R., Reddy, D., Kumavath, R., Kim, I. W., Patel, S. K., Kalia, V. C., & Lee, J. K. (2020). Inhibition of microbial quorum sensing mediated virulence factors by Pestalotiopsis sydowiana. Journal of Microbiology and Biotechnology, 30(4), 571–582. https://doi.org/10.4014/jmb.1907.07030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rather, M. A., Saha, D., Bhuyan, S., Jha, A. N. & Mandal, M. (2022). Quorum quenching: A drug discovery approach against Pseudomonas aeruginosa. Microbiological Research, 127173.https://doi.org/10.1016/j.micres.2022.127173

Download references

Acknowledgements

The authors express their gratitude to Sophisticated Analytical Instrumentation Centre (SAIC) Tezpur University for SEM images and BSI Shillong, India, for the plant identification.

Funding

The authors are thankful to DBT for providing financial support via DBT NER Twinning Programme vide letter no. BT/PR16149/NER/95/85/ 2015 dated January 19, 2017. The authors are also thankful to Tezpur University for providing us financial support via memo no. DoRD/RIG/10–73/ 1362-A dated 19/02/2019 and DoRD/RIG/10–73/ 1592-A dated 07/01/2021.

Author information

Authors and Affiliations

Authors

Contributions

Muzamil Ahmad Rather: conceptualization, methodology, conducted experiments, writing original draft, preparation, investigation, data analysis. Kuldeep Gupta, Arun Kumar Gupta: investigation. Poonam Mishra, Asifa Qureshi, Tapan Kumar Dutta, Siddhartha Narayan Joardar: review and editing. Manabendra Mandal: supervision, fund acquisition, investigation, project administration, review and editing. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Manabendra Mandal.

Ethics declarations

Ethics Approval and Consent to Participate

No human participant and/or animal were used in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10195 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, M.A., Gupta, K., Gupta, A.K. et al. Phytochemical Analysis and Demonstration of Antioxidant, Antibacterial, and Antibiofilm Activities of Ethnomedicinal Plants of North East India. Appl Biochem Biotechnol 195, 3257–3294 (2023). https://doi.org/10.1007/s12010-022-04273-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04273-0

Keywords

Navigation