Skip to main content
Log in

Sustainable Castor Bean Biodiesel Through Ricinus communis L. Lipase Extract Catalysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The rise in oil prices, global warming, and the depletion of nonrenewable resources have led researchers to study sustainable alternatives to increasing energy demand. The autocatalysis from castor oil and castor lipases to produce biodiesel can be an excellent alternative to reduce the production costs and avoid the drawbacks of chemical transesterification. This study aimed to evaluate the catalytic activity of castor bean lipase extract (CBLE) on three vegetable oils hydrolysis, to obtain and enhance biodiesel yield by an autocatalysis from castor oil and CBLE. Furthermore, the enzymatic biodiesel physicochemical quality was analyzed. The enzymatic activity for olive oil was 76.12 U, 90.06 U for commercial castor oil, and 75.60 U in raw castor oil. The hydrolysis percentages were high at 25 °C, pH 4.5, for 4 h with 97.18% for olive oil, 98.86%, and 96.19% for commercial and raw castor oil, respectively. The CBLE catalyzed the transesterification reaction on castor oil to obtain 82.91% biodiesel yield under the selected conditions of 20% lipase loading, 1:6 oil/methanol molar ratio, and 10% buffer pH 4.5, 37 °C for 8 h. The castor biodiesel quality satisfied the ASTM-D6751 (USA) and EN-14214 (European Union) values, except for the density, viscosity, and moisture, as expected for this kind of biodiesel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Abbreviations

ANOVA:

Analysis of variance

ASTM:

American Society for Testing and Materials

aw:

Water activity

BD:

Biodiesel

CBLE:

Castor bean lipase-powdered extract

CN:

Cetane number

CO2 :

Carbon dioxide

EN:

European Standards

f:

Fraction of oil

FAME:

Fatty acid methyl esters

FFA:

Free fatty acids

HHV:

Higher heating value

HPLC:

High-performance liquid chromatography

IU:

International Unit

IV:

Iodine value

M:

Molarity

MM:

Molecular mass

NaOH:

Sodium hydroxide

RI:

Refractive index

USA:

United States of America

UV/VIS:

Ultraviolet–visible

v:

Volume

w:

Weight

wc:

Water content

Wt:

Weight of the sample taken

References

  1. Friedlingstein, P. J., Matthew, W., O’sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., et al. (2019). Global carbon budget 2019. Journal of Earth System Science, 11(4), 1783–1838.

    Article  Google Scholar 

  2. Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Veziroglu, T. N., & Allakhverdiev, S. I. (2016). Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 41(39), 17257–17273.

    Article  CAS  Google Scholar 

  3. Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116.

    Article  CAS  Google Scholar 

  4. Guldhe, A., Singh, B., Mutanda, T., Permaul, K., & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews, 41, 1447–1464.

    Article  CAS  Google Scholar 

  5. Poppe, J. K., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. (2015). Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Biotechnology Advances, 33(5), 511–525.

    Article  CAS  Google Scholar 

  6. Singh, B., Guldhe, A., Rawat, I., & Bux, F. (2014). Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 29, 216–245.

    Article  CAS  Google Scholar 

  7. Torres-Rodríguez, D. A., Romero-Ibarra, I. C., Ibarra, I. A., & Pfeiffer, H. (2016). Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renewable Energy, 93, 323–331.

    Article  Google Scholar 

  8. Saba, T., Estephane, J., El Khoury, B., El Khoury, M., Khazma, M., El Zakhem, H., et al. (2016). Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts. Renewable Energy, 90, 301–306.

    Article  CAS  Google Scholar 

  9. Atabani, A., Silitonga, A., Ong, H., Mahlia, T., Masjuki, H., Badruddin, I. A., et al. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, 211–245.

    Article  CAS  Google Scholar 

  10. Ávila Vázquez, V., Díaz Estrada, R. A., Aguilera Flores, M. M., Escamilla Alvarado, C., & Correa Aguado, H. C. (2020). Transesterification of non-edible castor oil (Ricinus communis L.) from Mexico for biodiesel production: a physicochemical characterization. Biofuels, 11(7), 753–62.

    Google Scholar 

  11. Carrino, L., Visconti, D., Fiorentino, N., & Fagnano, M. (2020). Biofuel production with castor bean: A win–win strategy for marginal land. Agronomy, 10(11), 1690.

    Article  CAS  Google Scholar 

  12. Stamenković, O. S., Veličković, A. V., & Veljković, V. B. (2011). The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel, 90(11), 3141–3155.

    Article  Google Scholar 

  13. Cavalcante, F. T. T., Neto, F. S., de Aguiar Falcão, I. R., da Silva Souza, J. E., de Moura Junior, L. S., da Silva Sousa, P., et al. (2021). Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288, 119577.

    Article  CAS  Google Scholar 

  14. Quayson, E., Amoah, J., Hama, S., Kondo, A., Ogino, C. (2020). Immobilized lipases for biodiesel production: Current and future greening opportunities. Renewable and Sustainable Energy Reviews, 134, 110355.

  15. Kalita, P., Basumatary, B., Saikia, P., Das, B., Basumatary, S. (2022). Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus, 6, 100087.

  16. Zhong, L., Feng, Y., Hu, H., Xu, J., Wang, Z., Du, Y., et al. (2021). Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production. Journal of Colloid Interface Science, 602, 426–436.

    Article  CAS  Google Scholar 

  17. Zhang, Z., Du, Y., Kuang, G., Shen, X., Jia, X., Wang, Z., et al. (2022). Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production. Renewable Energy, 197, 110–124.

    Article  CAS  Google Scholar 

  18. Najeeb, J., Akram, S., Mumtaz, M. W., Danish, M., Irfan, A., Touqeer, T., et al. (2021). Nanobiocatalysts for biodiesel synthesis through transesterification—A review. Catalysts, 11(2), 171.

    Article  CAS  Google Scholar 

  19. Lin, B., & Tao, Y. (2017). Whole-cell biocatalysts by design. Microbial Cell Factories, 16(1), 1–12.

    Article  CAS  Google Scholar 

  20. Lin, Y. H., Luo, J. J., Hwang, S. C., Liau, P. R., Lu, W. J., & Lee, H. T. (2011). The influence of free fatty acid intermediate on biodiesel production from soybean oil by whole cell biocatalyst. Biomass and Bioenergy, 35(5), 2217–2223.

    Article  CAS  Google Scholar 

  21. Haq, A., Adeel, S., Khan, A., Khan, M. A. N., Rafiq, M., Ishfaq, M., et al. (2020). Screening of lipase-producing bacteria and optimization of lipase-mediated biodiesel production from Jatropha curcas seed oil using whole cell approach. BioEnergy Research, 13(4), 1280–1296.

    Article  CAS  Google Scholar 

  22. Tuter, M., Secundo, F., Riva, S., Aksoy, H. A., & Ustun, G. (2003). Partial purification of Nigella sativa L. seed lipase and its application in transesterification reactions. Journal of the American Oil Chemists’ Society, 80(1), 43–48.

    Article  CAS  Google Scholar 

  23. Cambon, E., Bourlieu, C., Salum, T. F. C., Piombo, G., Dubreucq, E., & Villeneuve, P. (2009). Ability of Vasconcellea × heilbornii lipase to catalyse the synthesis of alkyl esters from vegetable oils. Process Biochemistry, 44(11), 1265–1269.

    Article  CAS  Google Scholar 

  24. Mounguengui, R. W. M., Brunschwig, C., Baréa, B., Villeneuve, P., & Blin, J. (2013). Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Progress in Energy and Combustion Science, 39(5), 441–456.

    Article  Google Scholar 

  25. da Silva, J. A. C., Soares, V. F., Fernandez-Lafuente, R., Habert, A. C., & Freire, D. M. (2015). Enzymatic production and characterization of potential biolubricants from castor bean biodiesel. Journal of Molecular Catalysis B: Enzymatic, 122, 323–329.

    Article  Google Scholar 

  26. Tavares, F., Petry, J., Sackser, P., Borba, C., & Silva, E. (2018). Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Industrial Crops and Products, 124, 254–264.

    Article  CAS  Google Scholar 

  27. Corradini, F. A., Alves, E. S., Kopp, W., Ribeiro, M. P., Mendes, A. A., Tardioli, P. W., et al. (2019). Kinetic study of soybean oil hydrolysis catalyzed by lipase from solid castor bean seeds. Chemical Engineering Research and Design, 144, 115–122.

    Article  CAS  Google Scholar 

  28. Andrade, T. A., Errico, M., & Christensen, K. V. (2017). Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production. Bioresource Technology, 243, 366–374.

    Article  CAS  Google Scholar 

  29. Osorio-González, C. S., Gómez-Falcon, N., Sandoval-Salas, F., Saini, R., Brar, S. K., & Ramírez, A. A. (2020). Production of biodiesel from castor oil: A review. Energies, 13(10), 2467.

    Article  Google Scholar 

  30. Castro, P., Coello, J., Castillo, L. (2007). Opciones para la producción y uso del biodiesel, Soluciones Prácticas ITDG. Primera edición. Lima, Perú ed.

  31. Avelar, M. H., Cassimiro, D. M., Santos, K. C., Domingues, Rd. C., Heizir, F., & Mendes, A. A. (2013). Hydrolysis of vegetable oils catalyzed by lipase extract powder from dormant castor bean seeds. Industrial Crops and Products, 44, 452–58.

    Article  CAS  Google Scholar 

  32. Otari, S. V., Patel, S. K., Kalia, V. C., & Lee, J. K. (2020). One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresource Technology, 302, 122887.

    Article  CAS  Google Scholar 

  33. Zaharudin, N. A., Rashid, R., Azman, L., Esivan, S. M. M., Idris, A., & Othman, N. (2018). Enzymatic hydrolysis of used cooking oil using immobilized lipase. In Z. Zakaria (Ed.), Sustainable Technologies for the Management of Agricultural Wastes (pp. 119–130). Springer.

    Chapter  Google Scholar 

  34. Suwanno, S., Rakkan, T., Yunu, T., Paichid, N., Kimtun, P., Prasertsan, P., et al. (2017). The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst. Fuel, 195, 82–87.

    Article  CAS  Google Scholar 

  35. Dang, C.-H., & Nguyen, T.-D. (2019). Physicochemical characterization of Robusta spent coffee ground oil for biodiesel manufacturing. Waste Biomass Valorization, 10(9), 2703–2712.

    Article  CAS  Google Scholar 

  36. Eevera, T., Rajendran, K., & Saradha, S. (2009). Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy, 34(3), 762–765.

    Article  CAS  Google Scholar 

  37. Cavalcanti, E. D., Maciel, F. M., Villeneuve, P., Lago, R. C., Machado, O. L., & Freire, D. M. (2007). Acetone powder from dormant seeds of Ricinus communis L. Applied Biochemistry Biotechnology, 137(1), 57–65.

    Google Scholar 

  38. Soares, C.M., Castro, H.F.D., Moraes, F.F.D., Zanin, G.M. (1999). Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica, in: Davison, B.H., Finkelstein, M. (Ed.) In Twentieth Symposium on Biotechnology for Fuels and Chemicals, Humana Press, Totowa, NJ., pp. 745-57.

  39. Santos, K. C., Cassimiro, D. M., Avelar, M. H., Hirata, D. B., de Castro, H. F., Fernández-Lafuente, R., et al. (2013). Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Industrial Crops and Products, 49, 462–470.

    Article  CAS  Google Scholar 

  40. Koutinas, M., Yiangou, C., Osório, N. M., Ioannou, K., Canet, A., Valero, F., et al. (2018). Application of commercial and non-commercial immobilized lipases for biocatalytic production of ethyl lactate in organic solvents. Bioresource Technology, 247, 496–503.

    Article  CAS  Google Scholar 

  41. Bornscheuer, U. T. (2018). Enzymes in lipid modification. Annual Review of Food Science and Technology, 9, 85–103.

    Article  CAS  Google Scholar 

  42. Reis, P., Malmsten, M., Nydén, M., Folmer, B., & Holmberg, K. (2019). Interactions between lipases and amphiphiles at interfaces. Journal of Surfactants and Detergents, 22(5), 1047–1058.

    Article  CAS  Google Scholar 

  43. Casali, B., Brenna, E., Parmeggiani, F., Tessaro, D., & Tentori, F. (2021). Enzymatic methods for the manipulation and valorization of soapstock from vegetable oil refining processes. Sustainable Chemistry, 2(1), 74–91.

    Article  CAS  Google Scholar 

  44. Coelho, A. D., Santos, K. C., Domingues, R. C., & Mendes, A. A. (2013). Produção de concentrados de ácidos graxos por hidrólise de óleos vegetais mediada por lipase vegetal. Química Nova, 36(8), 1164–1169.

    Article  CAS  Google Scholar 

  45. Muto, S., & Beevers, H. (1974). Lipase activities in castor bean endosperm during germination. Plant Physiology, 54(1), 23–28.

    Article  CAS  Google Scholar 

  46. Aguieiras, E. C., Cavalcanti-Oliveira, E. D., de Castro, A. M., Langone, M. A., & Freire, D. M. (2014). Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, 135, 315–321.

    Article  CAS  Google Scholar 

  47. Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2006). Enzymatic hydrolysis of castor oil: Process intensification studies. Biochemical Engineering Journal, 31(1), 31–41.

    Article  CAS  Google Scholar 

  48. de Sousa, J. S., Cavalcanti-Oliveira, Ed. A., Aranda, D. A. G., & Freire, D. M. G. (2010). Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 65(1–4), 133–37.

    Article  Google Scholar 

  49. Jachmanián, I., & Mukherjee, K. (1996). Esterification and interesterification reactions catalyzed by acetone powder from germinating rapeseed. Journal of the American Oil Chemists’ Society, 73(11), 1527–1532.

    Article  Google Scholar 

  50. Eastmond, P. J. (2004). Cloning and characterization of the acid lipase from castor beans. Journal of Biological Chemistry, 279(44), 45540–45545.

  51. Ory, R. L. (1969). Acid lipase of the castor bean. Lipids, 4(3), 177–185.

    Article  CAS  Google Scholar 

  52. Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., et al. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1), 5–28.

    Article  CAS  Google Scholar 

  53. Pourzolfaghar, H., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review of the enzymatic hydroesterification process for biodiesel production. Renewable and Sustainable Energy Reviews, 61, 245–257.

    Article  CAS  Google Scholar 

  54. Zhou, Y., Li, K., & Sun, S. (2021). Simultaneous esterification and transesterification of waste phoenix seed oil with a high free fatty acid content using a free lipase catalyst to prepare biodiesel. Biomass and Bioenergy, 144, 105930.

    Article  CAS  Google Scholar 

  55. Gharat, N., & Rathod, V. K. (2013). Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrasonics Sonochemistry, 20(3), 900–905.

    Article  CAS  Google Scholar 

  56. Oliveira, D.d., Luccio, M.D., Faccio, C., Rosa, C.D., Bender, J.P., Lipke, N., et al., Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium, Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, Springer, 2004, pp. 771–780.

  57. Tüter, M. (1998). Castor bean lipase as a biocatalyst in the esterification of fatty acids to glycerol. Journal of the American Oil Chemists’ Society, 75(3), 417–420.

    Article  Google Scholar 

  58. Wancura, J. H., Rosset, D. V., Mazutti, M. A., Ugalde, G. A., de Oliveira, J. V., Tres, M. V., et al. (2019). Improving the soluble lipase–catalyzed biodiesel production through a two-step hydroesterification reaction system. Applied Microbiology Biotechnology, 103(18), 7805–7817.

    Article  CAS  Google Scholar 

  59. Lotti, M., Pleiss, J., Valero, F., & Ferrer, P. (2015). Effects of methanol on lipases: Molecular, kinetic and process issues in the production of biodiesel. Biotechnology Journal, 10(1), 22–30.

    Article  CAS  Google Scholar 

  60. Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H., & Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Conversion Management, 132, 82–90.

    Article  CAS  Google Scholar 

  61. Miao, C., Yang, L., Wang, Z., Luo, W., Li, H., Lv, P., et al. (2018). Lipase immobilization on amino-silane modified superparamagnetic Fe3O4 nanoparticles as biocatalyst for biodiesel production. Fuel, 224, 774–782.

    Article  CAS  Google Scholar 

  62. Sarno, M., & Iuliano, M. (2019). Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Applied Surface Science, 474, 135–146.

    Article  CAS  Google Scholar 

  63. Maleki, E., Aroua, M. K., & Sulaiman, N. M. N. (2013). Castor oil—A more suitable feedstock for enzymatic production of methyl esters. Fuel Processing Technology, 112, 129–132.

    Article  CAS  Google Scholar 

  64. Lousa, D., Baptista, An. M., & Soares, Cu. M. (2012). Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations. Journal of Chemical Information and Modeling, 52(2), 465–73.

    Article  CAS  Google Scholar 

  65. Antczak, M. S., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Enzymatic biodiesel synthesis–Key factors affecting efficiency of the process. Renewable Energy, 34(5), 1185–1194.

    Article  Google Scholar 

  66. Gupta, M. N., & Roy, I. (2004). Enzymes in organic media: Forms, functions and applications. European Journal of Biochemistry, 271(13), 2575–2583.

    Article  CAS  Google Scholar 

  67. Liu, C. H., Huang, C. C., Wang, Y. W., Lee, D. J., & Chang, J. S. (2012). Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Applied Energy, 100, 41–46.

    Article  CAS  Google Scholar 

  68. Abdulla, R., & Ravindra, P. (2013). Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass and Bioenergy, 56, 8–13.

    Article  CAS  Google Scholar 

  69. Bone, S., & Pethig, R. (1985). Dielectric studies of protein hydration and hydration-induced flexibility. Journal of Molecular Biology, 181(2), 323–326.

    Article  CAS  Google Scholar 

  70. Xie, W., & Ma, N. (2010). Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass and Bioenergy, 34(6), 890–896.

    Article  CAS  Google Scholar 

  71. Su, E.-Z., Zhou, Y., You, P.-Y., & Wei, D.-Z. (2010). Lipases in the castor bean seed of Chinese varieties: Activity comparison, purification and characterization. Journal of Shanghai University (English Edition), 14(2), 137–144.

    Article  CAS  Google Scholar 

  72. Du, W., Xu, Y., & Liu, D. (2003). Lipase-catalysed transesterification of soya bean oil for biodiesel production during continuous batch operation. Biotechnology Applied Biochemistry Biotechnology, 38(2), 103–106.

    Article  CAS  Google Scholar 

  73. Machado, S. A., Da Rós, P. C., de Castro, H. F., & Giordani, D. S. (2021). Hydrolysis of vegetable and microbial oils catalyzed by a solid preparation of castor bean lipase. Biocatalysis Agricultural Biotechnology, 37, 102188.

    Article  CAS  Google Scholar 

  74. Stergiou, P.-Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., et al. (2013). Advances in lipase-catalyzed esterification reactions. Biotechnology Advances, 31(8), 1846–1859.

    Article  CAS  Google Scholar 

  75. Lv, L., Dai, L., Du, W., & Liu, D. (2021). Progress in enzymatic biodiesel production and commercialization. Processes, 9(2), 355.

    Article  CAS  Google Scholar 

  76. Wehtje, E., & Adlercreutz, P. (1997). Water activity and substrate concentration effects on lipase activity. Biotechnology and Bioengineering, 55(5), 798–806.

    Article  CAS  Google Scholar 

  77. Nielsen, P. M., Brask, J., & Fjerbaek, L. (2008). Enzymatic biodiesel production: Technical and economical considerations. European Journal of Lipid Science Technology, 110(8), 692–700.

    Article  CAS  Google Scholar 

  78. Norjannah, B., Ong, H. C., Masjuki, H., Juan, J., & Chong, W. (2016). Enzymatic transesterification for biodiesel production: A comprehensive review. RSC Advances, 6(65), 60034–60055.

    Article  CAS  Google Scholar 

  79. Lv, L., Dai, L., Du, W., Liu, D.J.P. (2021). Progress in enzymatic biodiesel production and commercialization. Processes, 9(2), 355.

  80. Shah, S., & Gupta, M. N. (2008). The effect of ultrasonic pre-treatment on the catalytic activity of lipases in aqueous and non-aqueous media. Chemistry Central Journal, 2(1), 1–9.

    Article  Google Scholar 

  81. Yang, J., Zhang, B., & Yan, Y. (2009). Cloning and expression of Pseudomonas fluorescens 26–2 lipase gene in Pichia pastoris and characterizing for transesterification. Applied Biochemistry and Biotechnology, 159(2), 355–365.

    Article  CAS  Google Scholar 

  82. Ali, C. H., Qureshi, A. S., Mbadinga, S. M., Liu, J.-F., Yang, S. Z., & Mu, B. Z. (2017). Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomona aeruginosa FW_SH-1: Central composite design approach. Renewable Energy, 109, 93–100.

    Article  CAS  Google Scholar 

  83. Li, L., Du, W., Liu, D., Wang, L., & Li, Z. (2006). Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis. B, Enzymatic, 43(1–4), 58–62.

    Article  CAS  Google Scholar 

  84. Xia, C., Brindhadevi, K., Elfasakhany, A., Alsehli, M., & Tola, S. (2021). Performance, combustion and emission analysis of castor oil biodiesel blends enriched with nanoadditives and hydrogen fuel using CI engine. Fuel, 306, 121541.

    Article  CAS  Google Scholar 

  85. Kodate, S. V., Yadav, A. K., & Kumar, G. (2020). Combustion, performance and emission analysis of preheated KOME biodiesel as an alternate fuel for a diesel engine. Journal of Thermal Analysis and Calorimetry, 141(6), 2335–2345.

    Article  CAS  Google Scholar 

  86. Fadhil, A. B., Al-Tikrity, E. T., & Albadree, M. A. (2017). Biodiesel production from mixed non-edible oils, castor seed oil and waste fish oil. Fuel, 210, 721–728.

    Article  CAS  Google Scholar 

  87. Mallah, T. A., & Sahito, A. R. (2020). Optimization of castor and neem biodiesel blends and development of empirical models to predicts its characteristics. Fuel, 262, 116341.

    Article  CAS  Google Scholar 

  88. Muñoz, M., Moreno, F., Monné, C., Morea, J., & Terradillos, J. (2011). Biodiesel improves lubricity of new low sulphur diesel fuels. Renewable Energy, 36(11), 2918–2924.

    Article  Google Scholar 

  89. Elumalai, P., Parthasarathy, M., Hariharan, V., Jayakar, J., & Mohammed Iqbal, S. (2022). Evaluation of water emulsion in biodiesel for engine performance and emission characteristics. Journal of Thermal Analysis and Calorimetry, 147(6), 4285–4301.

    Article  CAS  Google Scholar 

  90. da Costa Cardoso, L., de Almeida, F. N. C., Souza, G. K., Asanome, I. Y., & Pereira, N. C. (2019). Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production. Renewable Energy, 133, 743–748.

    Article  Google Scholar 

  91. Armendáriz, J., Lapuerta, M., Zavala, F., García-Zambrano, E., & del Carmen Ojeda, M. (2015). Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel. Industrial Crops and Products, 77, 484–490.

    Article  Google Scholar 

  92. Keera, S., El Sabagh, S., & Taman, A. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979–984.

    Article  Google Scholar 

  93. Sivaramakrishnan, K., & Ravikumar, P. (2011). Determination of higher heating value of biodiesels. International Journal of Exploration in Science and Technology, 3(11), 7981–7987.

    Google Scholar 

  94. Knothe, G. (2002). Structure indices in FA chemistry. How relevant is the iodine value? Journal of the American Oil Chemists’ Society, 79(9), 847–54.

    Article  CAS  Google Scholar 

  95. Uriarte, F.A. (2010). Biofuels from plant oils: A Book for practitioners and professionals involved in biofuels, to promote a better and more accurate understanding of the nature, production, and use of biofuels from plant oils, ASEAN Foundation, Jakarta, Indonesia.

  96. Singh, B., Korstad, J., & Sharma, Y. (2012). A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. Renewable and Sustainable Energy Reviews, 16(5), 3401–3408.

    Article  CAS  Google Scholar 

  97. Chourasia, S. K., Lakdawala, A. M., & Patel, R. N. (2021). The examination, evaluation and comparison of corrosion effect on different metal surface by various crops based biodiesel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19), 4409–4424.

    CAS  Google Scholar 

  98. Constantino, A. F., Cubides-Román, D. C., dos Santos, R. B., Queiroz, L. H., Jr., Colnago, L. A., Neto, Á. C., et al. (2019). Determination of physicochemical properties of biodiesel and blends using low-field NMR and multivariate calibration. Fuel, 237, 745–752.

    Article  CAS  Google Scholar 

  99. Bueno, A. V., Pereira, M. P. B., de Oliveira Pontes, J. V., de Luna, F. M. T., & Cavalcante, C. L., Jr. (2017). Performance and emissions characteristics of castor oil biodiesel fuel blends. Applied Thermal Engineering, 125, 559–566.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Alejandro González Rivas, Verónica Ávila-Vázquez, Miguel Mauricio Aguilera Flores, Gloria Viviana Cerrillo-Rojas, and Hans Christian Correa-Aguado. The first draft of the manuscript was written by Hans Christian Correa-Aguado and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hans Christian Correa-Aguado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

The novelty of this research resides in increasing the limited scientific knowledge on producing enzymatic biodiesel by an autocatalytic transesterification from castor bean oil and castor bean lipases extract. A castor bean lipase extract was used as a whole-cell catalyst for the hydrolysis of different oil substrates and the castor oil transesterification in biodiesel synthesis. In addition, the best enzymatic transesterification conditions and the physicochemical parameters of castor oil biodiesel were determined.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas, A.G., Vázquez, V.Á., Flores, M.M.A. et al. Sustainable Castor Bean Biodiesel Through Ricinus communis L. Lipase Extract Catalysis. Appl Biochem Biotechnol 195, 1297–1318 (2023). https://doi.org/10.1007/s12010-022-04238-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04238-3

Keywords

Navigation