Skip to main content

Advertisement

Log in

Alleviating Drought Stress in Brassica juncea (L.) Czern & Coss. by Foliar Application of Biostimulants—Orthosilicic Acid and Seaweed Extract

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 03 September 2022

This article has been updated

Abstract

Agricultural productivity is negatively impacted by drought stress. Brassica is an important oilseed crop, and its productivity is often limited by drought. Biostimulants are known for their role in plant growth promotion, increased yields, and tolerance to environmental stresses. Silicon in its soluble form of orthosilicic acid (OSA) has been established to alleviate deteriorative effects of drought. Seaweed extract (SWE) also positively influence plant survival and provide dehydration tolerance under stressed environments. The present study was conducted to evaluate the efficacy of OSA and SWE on mitigating adverse effects of drought stress on Brassica genotype RH-725. Foliar application of OSA (2 ml/L and 4 ml/L) and SWE of Ascophyllum nodosum (3 ml/L and 4 ml/L) in vegetative stages in Brassica variety RH 725 under irrigated and rainfed condition revealed an increase in photosynthetic rate, stomatal conductance, transpirational rate, relative water content, water potential, osmotic potential, chlorophyll fluorescence, chlorophyll stability index, total soluble sugars, total protein content, and antioxidant enzyme activity; and a decrease in canopy temperature depression, proline, glycine-betaine, H2O2, and MDA content. Application of 2 ml/L OSA and 3 ml/L SWE at vegetative stage presented superior morpho-physiological and biochemical characteristics and higher yields. The findings of the present study will contribute to developing a sustainable cropping system by harnessing the benefits of OSA and seaweed extract as stress mitigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No separate data available with the authors.

Change history

References

  1. Akram, N. A., Iqbal, M., Muhammad, A., Ashraf, M., Al-Qurainy, F., & Shafiq, S. (2018). Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma, 255(1), 163–174.

    CAS  Google Scholar 

  2. Alferez, F., Alquezar, B., Burns, J. K., & Zacarias, L. (2010). Variation in water, osmotic and turgor potential in peel of ‘Marsh’grapefruit during development of postharvest peel pitting. Postharvest Biology and Technology, 56(1), 44–49.

    Google Scholar 

  3. Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants (Basel, Switzerland), 10(3), 531. https://doi.org/10.3390/plants10030531

    Article  CAS  Google Scholar 

  4. Amin, N. U., Khattak, S., Noor, S., & Ferroze, I. (2016). Synthesis and characterization of silica from bottom ash of sugar industry. Journal of Cleaner Production, 117, 207–211.

    CAS  Google Scholar 

  5. Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8, 69.

    Google Scholar 

  6. Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

    CAS  Google Scholar 

  7. Ayad, J.Y. (1998). The effect of seaweed (Ascophyllum nodosum) extract on antioxidant activities and drought tolerance of tall fescue (Festuca arundinacea Schreb.). Ph.D. Thesis. Texas Tech University

  8. Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    CAS  Google Scholar 

  9. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assay and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    CAS  Google Scholar 

  10. Beckett, R. P., & Van Staden, J. (1989). The effect of seaweed concentrate on the growth and yield of potassium stressed wheat. Plant and Soil, 116(1), 29–36.

    CAS  Google Scholar 

  11. Bensen, R. J., Boyer, J. S., & Mullet, J. E. (1988). Water deficit-induced changes in abscisic acid, growth, polyamines, translatable RNA in soybean hypocotyls. Plant Physiology, 88(2), 289–294.

    CAS  Google Scholar 

  12. Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field crops research, 112(2–3), 119–123.

    Google Scholar 

  13. Boaretto, L. F., Carvalho, G., Borgo, L., Creste, S., Landell, M. G., Mazzafera, P., & Azevedo, R. A. (2014). Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry : PPB, 74, 165–175.

    CAS  Google Scholar 

  14. Chaghakaboodi, Z., Kakaei, M., & Zebarjadi, A. (2021). Study of relationship between some agro-physiological traits with drought tolerance in rapeseed (Brassica napus L.) genotypes. The Central Asian Journal of Plant Science Innovation, 1, 1–9.

    Google Scholar 

  15. Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560.

    CAS  Google Scholar 

  16. Chen, W., Yao, X., Cai, K., & Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142(1), 67–76.

    CAS  Google Scholar 

  17. de Vasconcelos, A.C.F. (2020). Amelioration of drought stress on plants under biostimulant sources. In: Plant Stress Physiology. Intech Open https://doi.org/10.5772/intechopen.91975

  18. Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., & Shiranibidabadi, S. (2018). Effect of silicon on growth and development of strawberry under water deficit conditions. Horticultural Plant Journal, 4(6), 226–232.

    Google Scholar 

  19. Dwivedi, S., Kumar, A., Mishra, S., Sharma, P., Sinam, G., Bahadur, L., Goyal, V., Jain, N., & Tripathi, R. D. (2020). Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environmental Science and Pollution Research, 27, 24025–24038.

    CAS  Google Scholar 

  20. El-Kaoaua, M., Chernane, H., Benaliat, A., & Neamallah, L. (2013). Seaweed liquid extracts effect on Salvia officinalis growth, biochemical compounds and water deficit tolerance. African Journal of Biotechnology, 12(28), 4481–4489.

    Google Scholar 

  21. Emam, M. M., Khattab, H. E., Helal, N. M., & Deraz, A. E. (2014). Effect of sele-nium and silicon on yield quality of rice plant grown underdrought stress. Australian Journal of Crop Science, 8(4), 596.

    Google Scholar 

  22. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable agriculture (pp. 153–188). Springer.

    Google Scholar 

  23. Fathi, A., & Tari, D. B. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10, 1–6.

    Google Scholar 

  24. Fike, J. H., Allen, V. G., Schmidt, R. E., Zhang, X., Fontenot, J. P., Bagley, C. P., Ivy, R. L., Evans, R. R., Coelho, R. W., & Wester, D. B. (2001). Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. Journal of Animal Science, 79(4), 1011–1021.

    CAS  Google Scholar 

  25. Fischer, R. A., & Maurer, I. T. (1978). Drought resistance in spring wheat cultivars I. Grain yield responses. Australian Journal of Agricultural Research, 29, 879–912.

    Google Scholar 

  26. Fleurence, J. (2022). In N. Ramawat & V. Bhardwaj (Eds.), Biostimulants: Exploring Sources and Applications. Springer, Singapore: Plant Life and Environment Dynamics. https://doi.org/10.1007/978-981-16-7080-0_2

    Chapter  Google Scholar 

  27. Foyer, C.H., Harbinson, J. and Mullineaux, P. (1994). Oxygen metabolism and the regulation of photosynthetic electron transport. In: Causes of photooxidative stress and amelioration of defense systems in plants. pp. 1–42

  28. Shahriari, G.A., Mohkami, A., Niazi, A., Ghodoum Parizipour, M. H., & Habibi-Pirkoohi, M. (2021). Application of brown algae (Sargassum angustifolium) extract for improvement of drought tolerance in canola (Brassica napus L.). Iranian Journal of Biotechnology, 19(1), e2775. https://doi.org/10.30498/IJB.2021.2775

    Article  Google Scholar 

  29. Genard, H., Saos, J. L., Billard, J. P., Trémolières, A., & Boucaud, J. (1991). Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiology and Biochemistry, 29, 421–427.

    CAS  Google Scholar 

  30. Gong, H., & Chen, K. (2012). The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiologiae Plantarum, 34(4), 1589–1594.

    CAS  Google Scholar 

  31. Gong, H., Chen, K., Chen, G., Wang, S., & Zhang, C. (2003). Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition, 26(5), 1055–1063.

    CAS  Google Scholar 

  32. Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313–321.

    CAS  Google Scholar 

  33. Gratão, P. L., Monteiro, C. C., Antunes, A. M., Peres, L. E. P., & Azevedo, R. A. (2008). Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Annals of Applied Biology, 153(3), 321–333.

    Google Scholar 

  34. Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70, 303–307.

    CAS  Google Scholar 

  35. Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728–736.

    CAS  Google Scholar 

  36. Gunes, A., Inal, A., Adak, M. S., Bagci, E. G., Cicek, N., & Eraslan, F. (2008). Effect of drought stress implemented at pre-or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russian Journal of Plant Physiology, 55(1), 59–67.

    CAS  Google Scholar 

  37. Gunes, A., Pilbeam, D. J., Inal, A., & Coban, S. (2008). Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Communications in Soil Science and Plant Analysis, 39(13–14), 1885–1903.

    CAS  Google Scholar 

  38. Guo, T.C., Feng, W. Zhao, H.J. (2004) Photosynthetic characteristics of flag leaves and nitrogen effects in two winter wheat cultivars with different spike type. Acta Agronomica Sinica, 30(2), 115-121.

  39. Habibi, G. (2014). Silicon supplementation improves drought tolerance in canola plants. Russian Journal of Plant Physiology, 61(6), 784–791.

    CAS  Google Scholar 

  40. Haddad, R., & Kamangar, A. (2015). The ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.) leaves. Iranian Journal of Genetics and Plant Breeding, 4(2), 48–58.

    Google Scholar 

  41. Hajiboland, R., Cheraghvareh, L., & Poschenrieder, C. (2017). Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. Journal of Plant Nutrition, 40(12), 1661–1676.

    CAS  Google Scholar 

  42. Hamedeh, H., Antoni, S., Cocciaglia, L., & Ciccolini, V. (2022). Molecular and physiological effects of magnesium–polyphenolic compound as biostimulant in drought stress mitigation in tomato. Plants., 11(5), 586. https://doi.org/10.3390/plants11050586

    Article  CAS  Google Scholar 

  43. Hamdia, M. A., & Shaddad, M. A. K. (2010). Salt tolerance of crop plants. Journal of Stress Physiology & Biochemistry, 6(3), 64–90.

    Google Scholar 

  44. Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T. I., Masud, A. A. C., & Fotopoulos, V. (2021). Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, 10, 2537. https://doi.org/10.3390/cells10102537

    Article  CAS  Google Scholar 

  45. Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4), 459–466.

    CAS  Google Scholar 

  46. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    CAS  Google Scholar 

  47. Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393.

    Google Scholar 

  48. Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., Saqib, M., & Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389–402.

    Google Scholar 

  49. Hussain, S., Khan, F., Cao, W., Wu, L., & Geng, M. (2016). Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Frontiers in Plant Science, 7, 439.

    Google Scholar 

  50. Hussain, S., Khan, F., Hussain, H. A., & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science, 7, 116.

    Google Scholar 

  51. Jacomassi, L. M., Viveiros, J. O., Oliveira, M. P., Momesso, L., de Siqueira, G. F., & Crusciol, C. A. C. (2022). A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Frontiers in Plant Science, 13, 865291. https://doi.org/10.3389/fpls.2022.865291

    Article  Google Scholar 

  52. Jain N, Chidrawar S, Thorat V, Shah P, and Rajput M. (2019). Role of orthosilicic acid (OSA) based formulation in improving plant growth and development. Silicon, 11. https://doi.org/10.1007/s12633-015-9380-x

  53. Kapur, B., Sarıdaş, M. A., Çeliktopuz, E., Kafkas, E., & Paydaş, K. S. (2018). Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.04.108

    Article  Google Scholar 

  54. Kaya, C., Tuna, L., & Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29, 1469–1480.

    CAS  Google Scholar 

  55. Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399.

    CAS  Google Scholar 

  56. Kim, Y. H., Khan, A. L., Waqas, M., & Lee, I. J. (2017). Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Frontiers in Plant Science, 8, 510.

    Google Scholar 

  57. Kosar, F., Akram, N., & Ashraf, M. (2015). Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South African Journal of Botany, 96, 71–77.

    CAS  Google Scholar 

  58. Kumar, G., & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23(2), 251–255.

    Google Scholar 

  59. Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A., & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 63(1–3), 19–27.

    CAS  Google Scholar 

  60. Lee, S., Sohn, E., Hamayun, M., Yoon, J., & Lee, I. (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems., 80, 333–340. https://doi.org/10.1007/s10457-010-9299-6

    Article  Google Scholar 

  61. Liang, Y., Zhang, W., Chen, Q., Liu, Y., & Ding, R. (2006). Effect of exogenous Si on H+ - ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 57, 212–219.

    CAS  Google Scholar 

  62. Liu, H., Shen, X., & Guo, Z. (2011). Effects of silicon addition on seed germination and seedling growth of alfalfa. Acta Prataculturae Sinica, 20(1), 155–160.

    Google Scholar 

  63. Lohani, N., Jain, D., Singh, M. B., & Bhalla, P. L. (2020). Engineering multiple abiotic stress tolerance in canola. Brassica napus. Frontiers in plant science, 11, 3. https://doi.org/10.3389/fpls.2020.00003

    Article  Google Scholar 

  64. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, J. L. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  65. Ma, C. C., Li, Q. F., Gao, Y. B., & Xin, T. R. (2004). Effects of silicon application on drought resistance of cucumber plants. Soil Science and Plant Nutrition, 50, 623–632.

    Google Scholar 

  66. Maghsoudi, K., Emam, Y., & Pessarakli, M. (2016). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39(7), 1001–1015.

    CAS  Google Scholar 

  67. Manivannan, A., & Ahn, Y. K. (2017). Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science, 8, 1346.

    Google Scholar 

  68. Mansori, M., Chernane, H., Latique, S., Benaliat, A., Hsissou, D., & El Kaoua, M. (2015). Seaweed extract effect on water deficit and antioxidative mechanisms in bean plants (Phaseolus vulgaris L.). Journal of Applied Phycology, 27(4), 1689–1698.

    Google Scholar 

  69. Mauad, M., Crusciol, C. A. C., Nascente, A. S., Grassi Filho, H., & Lima, G. P. P. (2016). Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Revista Ciência Agronômica, 47(3), 532–539.

    Google Scholar 

  70. Meenakshi, S., Gnanambigai, D. M., Mozhi, S. T., Arumugam, M., & Balasubramanian, T. (2009). Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Global Journal of Pharmacology, 3(2), 59–62.

    Google Scholar 

  71. Merwad, A. R. M., Desoky, E. S. M., & Rady, M. M. (2018). Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, 228, 132–144.

    CAS  Google Scholar 

  72. Mohammadkhani, N., & Heidari, R. (2008). Effects of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology, 32(1), 23–30.

    CAS  Google Scholar 

  73. Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.

    Google Scholar 

  74. Monteiro, E., Gonçalves, B., Cortez, I., & Castro, I. (2022). The role of biostimulants as alleviators of biotic and abiotic stresses in grapevine: A review. Plants (Basel, Switzerland), 11(3), 396. https://doi.org/10.3390/plants11030396

    Article  CAS  Google Scholar 

  75. Mooney, P. A., & Van Staden, J. (1986). Algae and cytokinins. Journal of Plant Physiology, 123, 1–2.

    CAS  Google Scholar 

  76. Nair, A. S., Abraham, T. K., & Jaya, D. S. (2008). Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties. Journal of Environmental Biology, 29, 689–691.

    CAS  Google Scholar 

  77. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22(5), 867–880.

    CAS  Google Scholar 

  78. Neill, S., Desikan, R., & Hancock, J. (2002). Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5(5), 388–395.

    CAS  Google Scholar 

  79. O’Sullivan, A. M., O’Callaghan, Y. C., O’Grady, M. N., Queguineur, B., Hanniffy, D., Troy, D. J., Kerry, J. P., & O’Brien, N. H. (2011). Vitro and cellular antioxidant of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry, 126, 1064–1070.

    Google Scholar 

  80. Pang, Z., Tayyab, M., Islam, W., Tarin, M. W., Sarfa-raz, R., Naveed, H., Zaman, S., Zhang, B., Yuan, Z., & Zhang, H. (2019). Silicon mediated improvement in tolerance of economically important crops under drought stress. Applied Ecology and Environmental Research, 17(3), 6151–6170.

    Google Scholar 

  81. Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). biostimulants research in some horticultural plant species—A review. Food Energy Security. https://doi.org/10.1002/fes3.162

    Article  Google Scholar 

  82. Pei, Z. F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong, H. J., & Zhou, W. J. (2010). Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation, 29(1), 106–115.

    CAS  Google Scholar 

  83. Prise, N. M., & Sabale, A. B. (2010). Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenumgraecum L. Journal of Phytology, 2, 50–56.

    Google Scholar 

  84. Putra, E. T. S., & Purwanto, B. H. (2015). Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. Journal of Agronomy, 14(2), 49.

    CAS  Google Scholar 

  85. Rai, N., Rai, S. P., & Sarma, B. K. (2021). Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Frontiers in Sustainable Food Systems, 5, 754853. https://doi.org/10.3389/fsufs.2021.754853

    Article  Google Scholar 

  86. Rajkumar, I., & Subramanian, S. K. (1999). Effect of fresh extracts and seaweed liquid fertilizers on some cereals and millets. Seaweed Research and Utilization, 21, 91–94.

    Google Scholar 

  87. Rastogi, A., Yadav, S., Hussain, S., Kataria, S., HajihashemiS, K. P., Yang, X., & Brestic, M. (2021). Does silicon really matter for the photosynthetic machinery in plants…? Plant Physiology and Biochemistry, 169, 40–48.

    CAS  Google Scholar 

  88. Rasul, F., Gupta, S., Olas, J. J., Gechev, T., Sujeeth, N., & Mueller-Roeber, B. (2021). Priming with a seaweed extract strongly improves drought tolerance in Arabidopsis. International Journal of Molecular Sciences, 22(3), 1469. https://doi.org/10.3390/ijms22031469

    Article  CAS  Google Scholar 

  89. Ratnakumar, P., Deokate, P. P., Rane, J., Jain, N., Kumar, V., Berghe, D. V., & Minhas, P. S. (2016). Effect of ortho-orthosilicic acid exogenous application on wheat (Triticum aestivum L.) under drought. Journal of Functional And Environmental Botany, 6(1), 34–42.

    Google Scholar 

  90. Reynolds, M.P., Nagarajan, S., Razzaque, M.A. and Ageeb, O.A.A. (2001). Heat tolerance. In: Application of Physiology in Wheat Breeding, 124–135.

  91. Riccardi, F., Gazeau, P., de Vienne, D., & Zivy, M. (1998). Protein changes in response to progressive water deficit in maize, quantitative variation and polypeptide identification. Plant Physiology, 117(4), 1253–1263.

    CAS  Google Scholar 

  92. Rios, J. J., Martínez-Ballesta, M. C., Ruiz, J. M., Blasco, B., & Carvajal, M. (2017). Silicon-mediated improvement in plant salinity tolerance: The role of aquaporins. Frontiers in Plant Science, 8, 948.

    Google Scholar 

  93. Rizwan, M., Atta, B., Bilal, M., Noushahi, H. A., Ali, M. Y., Shabbir, M. A., et al. (2019). Effect of abiotic stresses on Brassica species and role of transgenic breeding for adaptation. Asian Journal of Research in Crop Science, 3(1), 1–10.

    Google Scholar 

  94. Sairam, R. K., & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55–61.

    CAS  Google Scholar 

  95. Sairam, R. K., Srivastava, G. C., & Saxena, D. C. (2000). Increased antioxidant activity under elevated temperatures: A mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum, 43, 245–251.

    CAS  Google Scholar 

  96. Sairam, R. K., Srivastava, G. C., Agarwal, S., & Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 49(1), 85.

    CAS  Google Scholar 

  97. Santaniello, A., Scartazza, A., Gresta, F., Loreti, E., Biasone, A., Di Tommaso, D., Piaggesi, A., & Perata, P. (2017). Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Frontiers in plant science, 8, 1362. https://doi.org/10.3389/fpls.2017.01362

    Article  Google Scholar 

  98. Sattar, A., Cheema, M. A., Sher, A., Ijaz, M., Ul-Allah, S., Nawaz, A., & Ali, Q. (2019). Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiologiae Plantarum, 41(8), 146.

    Google Scholar 

  99. Saja-Garbarz, D., Libik-Konieczny, M., Fellner, M., Jurczyk, B., & Janowiak, F. (2022). Silicon-induced alterations in the expression of aquaporins and antioxidant system activity in well-watered and drought-stressed oilseed rape. Plant Physiology and Biochemistry, 174, 73–86.

    CAS  Google Scholar 

  100. Saha, G., Mostofa, M. G., Rahman, M. M., & Tran, L. P. (2021). Silicon-mediated heat tolerance in higher plants: A mechanistic outlook. Plant Physiol Biochem, 166, 341–347.

    CAS  Google Scholar 

  101. Savvas, D., & Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66–81.

    CAS  Google Scholar 

  102. Shukla, P. S., Shotton, K., Norman, E., Neily, W., Critchley, A. T., & Prithiviraj, B. (2018). Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB PLANTS, 10(1), plx051. https://doi.org/10.1093/aobpla/plx051

    Article  CAS  Google Scholar 

  103. Siddiqui, M. H., Al-Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry, 33(11), 2429–2437.

    CAS  Google Scholar 

  104. Singh, V. V., Garg, P., Meena, H. S., & Meena, M. L. (2018). Drought stress response of Indian mustard (Brassica juncea L.) genotypes. International Journal of Current Microbiology and Applied Sciences, 7(3), 2519–2526.

    Google Scholar 

  105. Sinha, A. K. (1972). Calorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394.

    CAS  Google Scholar 

  106. Sivasankari, S., Venkatesalu, V., Anantharaj, M., & Chandrasekaran, M. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14), 1745–1751.

    CAS  Google Scholar 

  107. Sofi, P., Ara, A., Gull, M., & Rehman, K. (2019). Canopy temperature depression as an effective physiological trait for drought screening. https://doi.org/10.5772/intechopen.85966

    Article  Google Scholar 

  108. Song, A., Li, P., Fan, F., Li, Z., & Liang, Y. (2014). The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One, 9(11), e113782.

    Google Scholar 

  109. Sullivan, C. Y., & Ross, W. M. (1979). Selecting for drought and heat resistance in grain sorghum. In H. Mussell & R. C. Staples (Eds.), Stress Physiology in Crop Plants (pp. 263–281). John Wiley and Sons.

    Google Scholar 

  110. Taleahmad, S., & Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47(1), 17–27.

    CAS  Google Scholar 

  111. Tan, Y., Liang, Z., Shao, H., & Du, F. (2006). Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage. Colloids and Surfaces B: Biointerfaces, 49(1), 60–65.

    CAS  Google Scholar 

  112. Thevanathan, R., Rajarajan, R., & Bhavan, I. L. G. (2005). Liquid fertilizer preparation of marine microalgae to enhance the yield and quality of tea. Seaweed Research and Utilisation, 27, 117–123.

    Google Scholar 

  113. Thompson, A. K., & Bishop, D. (2016). Controlled atmosphere technology. Reference Module in Food Science, Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21136-0

    Article  Google Scholar 

  114. Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10–16.

    CAS  Google Scholar 

  115. Ullah, H., Datta, A., Shrestha, S., & Ud Din, S. (2017). The effects of cultivation methods and water regimes on root systems of drought-tolerant (RD6) and drought-sensitive (RD10) rice varieties of Thailand. Archives of Agronomy and Soil Science, 63, 1198–1209.

    Google Scholar 

  116. Valipour, M. (2014). Analysis of potential evapotranspiration using limited weather data. Applied Water Science, 4, 113–120.

    Google Scholar 

  117. Valipour, M., & Eslamian, S. (2014). Analysis of potential evapotranspiration using 11 modified temperature based models. International Journal of Hydrology Science and Technology, 4, 192–207.

    Google Scholar 

  118. Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., and Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. https://chembioagro.springeropen.com/Chem. Biol. Technol. Agric. 4:5. https://doi.org/10.1186/s40538-017-0089-5

  119. Verma, K. K., Wu, K. C., Singh, P., Malviya, M. K., Singh, R. K., Song, X. P., & Li, Y. R. (2019). The protective role of silicon in sugarcane under water stress: Photosynthesis and antioxidant enzymes. Biomedical Journal of Scientific & Technical Research, 15(2), 1–7.

    Google Scholar 

  120. Wang, Y., Zhang, B., Jiang, D., & Chen, G. (2019). Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environmental and Experimental Botany, 158, 117–124.

    CAS  Google Scholar 

  121. Wang, M., Wang, R., Mur, L. A. J., et al. (2021). Functions of silicon in plant drought stress responses. Hortic Res, 8, 254. https://doi.org/10.1038/s41438-021-00681-1

    Article  CAS  Google Scholar 

  122. Wu, Guo-Qiang & R.-J, Feng & Q.-Z, Shui. (2016). Effect of osmotic stress on growth and osmolytes accumulation in sugar beet (Beta vulgaris L.) plants. Plant Soil and Environment, 62, 189-194.

  123. Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrate in the plant extract by anthrone reagent. Journal of Biochemistry, 57, 508–514.

    CAS  Google Scholar 

  124. Yeo, A. R., Flowers, S. A., Rao, G., Welfare, K., Senanayake, N., & Flowers, T. J. (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell and Environment, 22(5), 559–565.

    CAS  Google Scholar 

  125. Yin, L., Wang, S., Li, J., Tanaka, K., & Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 35(11), 3099–3107.

    CAS  Google Scholar 

  126. Yu S, Yi Z, Weihua H, Ru F, Yanhong H, Jia G,and Haijun G. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science. 7https://doi.org/10.3389/fpls.2016.00196

  127. Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotechnology, 9(3), 73. https://doi.org/10.1007/s13205-019-1613-z

    Article  Google Scholar 

  128. Zhang, S. R., Li, S. Y., Ding, X., Li, F., Liu, C., Liao, X., et al. (2013). Silicon-mediated the detoxification of Cron pakchoi (Brassica chinensis L.) in Cr-contaminated soil. International Journal of Agriculture, Environment, 11, 814–819.

    CAS  Google Scholar 

  129. Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., Cui, K., & Nie, L. (2016). Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78, 167–178.

    CAS  Google Scholar 

  130. Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527–533.

    CAS  Google Scholar 

  131. Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum, 50(3), 389–394.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VG conceived the idea, designed experiments, and provided guidance for the work. SU carried out the experimental work and data curation. R supervised and managed the crop in the farm; SM performed major formal data analysis and subsequent discussion and prepared the initial and final draft of manuscript, conducted review and editing, and revisions based on reviewers’ suggestions. VG and VB assisted in data analysis and figure/graph preparation. SM was involved in correspondence with the journal. All authors read and consented on the manuscript.

Corresponding authors

Correspondence to Vinod Goyal or Shweta Mehrotra.

Ethics declarations

Ethical Approval

Study requires no ethical approvals. Manuscript is in compliance with ethical standards.

Consent to Participate

Not applicable.

Consent for Publication

Consent to publish has been received from all authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujata, Goyal, V., Baliyan, V. et al. Alleviating Drought Stress in Brassica juncea (L.) Czern & Coss. by Foliar Application of Biostimulants—Orthosilicic Acid and Seaweed Extract. Appl Biochem Biotechnol 195, 693–721 (2023). https://doi.org/10.1007/s12010-022-04085-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04085-2

Keywords

Navigation