Skip to main content

Advertisement

Log in

High-throughput, Label-free Proteomics Identifies Salient Proteins and Genes in MDA-MB-231 Cells Treated with Natural Neem-based Electrochemotherapy

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With the absence of the three most common receptor targets, and with high vascularity and higher-grade tumors, triple-negative breast cancer (TNBC) is the most aggressive of all breast cancer subtypes and is in need of additional/alternative/novel treatment strategies. With ~ 15% of the over 2 million new cases each year, there is an unmet need to treat TNBC. MDA-MB-231, human TNBC cells, were treated with neem leaf extract (Neem) and eight, 1200 V/cm, 100 µs electric pulses (EP), and their viability and proteomic profiles were studied. With EP + Neem, a lower viability of 37% was observed after 24 h, compared to 85% in the neem-only samples, indicating the efficacy of the combinational treatment. The proteomics results indicated significant upregulation of 525 proteins and downregulation of 572 proteins, with a number of different pathways in each case. These include a diverse group of proteins, such as receptors, heat shock proteins, and many others. The upregulated TCA cycle and OXPHOS pathways and the downregulated DNA replication and ubiquitin-mediated proteolytic pathways were associated with effective cell death, demonstrating the potency of this treatment. Viability results reveal the efficacious anticancer effects of the EP + Neem combination, via growth inhibition, on TNBC cells. Proteomics studies could readily identify the effected protein pathways, and their corresponding genes, that are responsible for cell death. This represents a potential therapeutic strategy against TNBC when patients are refractory to standard treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

All data sources could be available to readers on request.

References

  1. Breast Cancer Overtakes Lung Cancer. Available from: https://www.reuters.com/article/us-health-cancer/breast-cancer-overtakes-lung-as-most-common-cancer-who-idUSKBN2A21AK. [ Last Accessed Feb 02 2021.]

  2. Masuda, H., Baggerly, K. A., Wang, Y., Zhang, Y., Gonzalez-Angulo, A. M., Meric-Bernstam, F., ... & Ueno, N. T. (2013). Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clinical cancer research19(19), 5533-5540

  3. Kosok, M., Alli-Shaik, A., Bay, B. H., & Gunaratne, J. (2020). Comprehensive proteomic characterization reveals subclass-specific molecular aberrations within triple-negative breast cancer. Iscience, 23(2), 100868.

    Article  CAS  Google Scholar 

  4. Malla, R. R., Deepak, K. G. K., Merchant, N., & Dasari, V. R. (2020). Breast tumor microenvironment: Emerging target of therapeutic phytochemicals. Phytomedicine, 153227.

  5. Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., & Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of clinical investigation, 121(7), 2750–2767.

    Article  CAS  Google Scholar 

  6. Liu, N. Q., Stingl, C., Look, M. P., Smid, M., Braakman, R. B., De Marchi, T., ... & Umar, A. (2014). Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer. JNCI: Journal of the National Cancer Institute106(2)

  7. Lawrence, R. T., Perez, E. M., Hernández, D., Miller, C. P., Haas, K. M., Irie, H. Y., ... & Villén, J. (2015). The proteomic landscape of triple-negative breast cancer. Cell reports11(4), 630-644.

  8. Miah, S., Banks, C. A., Adams, M. K., Florens, L., Lukong, K. E., & Washburn, M. P. (2017). Advancement of mass spectrometry-based proteomics technologies to explore triple negative breast cancer. Molecular BioSystems, 13(1), 42–55.

    Article  CAS  Google Scholar 

  9. Hill, D. P., Harper, A., Malcolm, J., McAndrews, M. S., Mockus, S. M., Patterson, S. E., ... & Blake, J. A. (2019). Cisplatin-resistant triple-negative breast cancer subtypes: Multiple mechanisms of resistance. BMC cancer19(1), 1-13

  10. Zou, W., Yang, Y., Zheng, R., Wang, Z., Zeng, H., Chen, Z., ... & Wang, J. (2020). Association of CD44 and CD24 phenotype with lymph node metastasis and survival in triple-negative breast cancer. International Journal of Clinical and Experimental Pathology13(5), 1008

  11. Sharma, R., Kaushik, S., Shyam, H., Agarwal, S., & Balapure, A. K. (2017). Neem seed oil induces apoptosis in MCF-7 and MDA MB-231 human breast cancer cells. Asian Pacific journal of cancer prevention: APJCP, 18(8), 2135.

    PubMed  PubMed Central  Google Scholar 

  12. Sharma, C., Vas, A. J., Goala, P., Gheewala, T. M., Rizvi, T. A., & Hussain, A. (2014). Ethanolic neem (Azadirachta indica) leaf extract prevents growth of MCF-7 and HeLa cells and potentiates the therapeutic index of cisplatin. Journal of oncology, 2014, 321754.

    Article  Google Scholar 

  13. Moga, M. A., Bălan, A., Anastasiu, C. V., Dimienescu, O. G., Neculoiu, C. D., & Gavriș, C. (2018). An overview on the anticancer activity of Azadirachta indica (Neem) in gynecological cancers. International journal of molecular sciences, 19(12), 3898. https://doi.org/10.3390/ijms1912389813

    Article  PubMed Central  Google Scholar 

  14. Othman, F., Motalleb, G., Peng, S. L. T., Rahmat, A., Basri, R., & Pei, C. P. (2012). Effect of neem leaf extract (Azadirachta indica) on c-Myc oncogene expression in 4T1 breast cancer cells of BALB/c mice. Cell Journal (Yakhteh), 14(1), 53.

    Google Scholar 

  15. Boopalan, T., Arumugam, A., Damodaran, C., & Rajkumar, L. (2012). The anticancer effect of 2’-3’-dehydrosalannol on triple-negative breast cancer cells. Anticancer research, 32(7), 2801–2806.

    CAS  PubMed  Google Scholar 

  16. Marty, M., Sersa, G., Garbay, J. R., Gehl, J., Collins, C. G., Snoj, M., ... & Mir, L. M. (2006). Electrochemotherapy–An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer Supplements4(11), 3-13. doi:https://doi.org/10.1007/s11517-012-0991-8

  17. Serša, G., Čemažar, M., & Miklavčič, D. (1995). Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum (II) in mice. Cancer research, 55(15), 3450–3455.

    PubMed  Google Scholar 

  18. Campana, L. G., Miklavčič, D., Bertino, G., Marconato, R., Valpione, S., Imarisio, I., ... & Sersa, G. (2019, April). Electrochemotherapy of superficial tumors–Current status:: Basic principles, operating procedures, shared indications, and emerging applications. In Seminars in oncology (Vol. 46, No. 2, pp. 173–191). WB Saunders. https://doi.org/10.1053/j.seminoncol.2019.04.002.

  19. Clover, et al. Electrochemotherapy in the treatment of cutaneous malignancy: Outcomes and subgroup analysis from the cumulative results from the pan-European International Network for sharing practice in Electrochemotherapy database for 2482 lesions in 987 patients (2008-2019). European Journal of Cancer 2020, 138, pp. 30-40. doi: https://doi.org/10.1016/j.ejca.2020.06.020

  20. Hansen, H. F., Bourke, M., Stigaard, T., Clover, J., Buckley, M., O’Riordain, M., ... & Gehl, J. (2020). Electrochemotherapy for colorectal cancer using endoscopic electroporation: a phase 1 clinical study. Endoscopy international open8(2), E124

  21. Wichtowski, M., Murawa, D., Czarnecki, R., Piechocki, J., Nowecki, Z., & Witkiewicz, W. (2019). Electrochemotherapy in the treatment of breast cancer metastasis to the skin and subcutaneous tissue-multicenter experience. Oncology research and treatment, 42(1–2), 47–51.

    Article  CAS  Google Scholar 

  22. How can proteomics boost the discovery of novel drugs and biomarkers? https://www.labiotech.eu. Acessed Jan 2021.

  23. Mittal, L., Aryal, U. K., Camarillo, I. G., Ferreira, R. M., & Sundararajan, R. (2019). Quantitative proteomic analysis of enhanced cellular effects of electrochemotherapy with Cisplatin in triple-negative breast cancer cells. Scientific reports, 9(1), 1–16.

    Google Scholar 

  24. Mittal, L., Aryal, U. K., Camarillo, I. G., Raman, V., & Sundararajan, R. (2020). Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study. Bioelectrochemistry, 131, 107350. https://doi.org/10.1016/j.bioelechem.2019.107350

    Article  CAS  PubMed  Google Scholar 

  25. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (Vol. 821). John Wiley & Sons.

  26. Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44.

    Article  Google Scholar 

  27. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., ... & Mering, C. V. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research47(D1), D607-D613.

  28. Carmona-Saez, P., Chagoyen, M., Tirado, F., Carazo, J. M., & Pascual-Montano, A. (2007). GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists. Genome biology, 8(1), 1–8.

    Article  Google Scholar 

  29. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research, 37(1), 1–13.

    Article  Google Scholar 

  30. Walczak, A., Gradzik, K., Kabzinski, J., Przybylowska-Sygut, K., & Majsterek, I. (2019). The role of the ER-induced UPR pathway and the efficacy of its inhibitors and inducers in the inhibition of tumor progression. Oxidative medicine and cellular longevity, 2019, 5729710.

    Article  Google Scholar 

  31. Oslowski, C. M., & Urano, F. (2011). Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in enzymology, 490, 71–92.

    Article  CAS  Google Scholar 

  32. Boyer, A. S., Walter, D., & Sørensen, C. S. (2016). DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. In Seminars in cancer biology, 37, 16–25. Academic Press.

    Article  Google Scholar 

  33. Myung, J., Kim, K. B., & Crews, C. M. (2001). The ubiquitin-proteasome pathway and proteasome inhibitors. Medicinal research reviews, 21(4), 245–273.

    Article  CAS  Google Scholar 

  34. Nuñez, G., Benedict, M. A., Hu, Y., & Inohara, N. (1998). Caspases: The proteases of the apoptotic pathway. Oncogene, 17(25), 3237–3245.

    Article  Google Scholar 

  35. Elena-Real, C. A., Díaz-Quintana, A., González-Arzola, K., Velázquez-Campoy, A., Orzáez, M., López-Rivas, A., ... & Díaz-Moreno, I. (2018). Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Cell death & disease9(3), 1-12

  36. Benov, L. C., Antonov, P. A., & Ribarov, S. R. (1994). Oxidative damage of the membrane lipids after electroporation. General physiology and biophysics, 13, 85–85.

    CAS  PubMed  Google Scholar 

  37. Gabriel, B., & Teissie, J. (1994). Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. European Journal of Biochemistry, 223(1), 25–33.

    Article  CAS  Google Scholar 

  38. Biebl, M. M., & Buchner, J. (2019). Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harbor perspectives in biology, 11(9), a034017.

    Article  CAS  Google Scholar 

  39. Klimczak, M., Biecek, P., Zylicz, A., & Zylicz, M. (2019). Heat shock proteins create a signature to predict the clinical outcome in breast cancer. Scientific reports, 9(1), 1–15.

    Article  CAS  Google Scholar 

  40. Zoppino, F. C., Guerrero-Gimenez, M. E., Castro, G. N., & Ciocca, D. R. (2018). Comprehensive transcriptomic analysis of heat shock proteins in the molecular subtypes of human breast cancer. BMC Cancer, 18(1), 1–17.

    Article  Google Scholar 

  41. Pragatheiswar, G., Mittal, L., Camarillo, I. G., & Sundararajan, R. (2021). Analysis of pathways in triple-negative breast cancer cells treated with the combination of electrochemotherapy and cisplatin. Biointerface Research in Applied Chemistry, 11(5), 13453–13464. https://doi.org/10.33263/BRIAC115.1345313464

    Article  Google Scholar 

Download references

Acknowledgements

Jeya Shree T is very grateful to the 2019-2020 SERB Fellowship that enabled her to visit Purdue and do the experiments. All the mass spec experiments were performed at the Purdue Proteomics Facility, Bindley Bioscience Center. We are very grateful to its Director, Dr. Uma Aryal, for his kind help. The Q Exactive Orbitrap HF and UltiMate 3000 HPLC system used for LC-MS/MS analysis were purchased from funding provided by the Purdue Office of the Executive Vice President for Research and Partnership. The authors are grateful to Dr. Laura W. Bower’s lab for the use of a spectrophotometer, and Drs. Emily C. Dykhuizen’s and Ourania M. Andrisani’s labs for their qPCR machines. The authors are grateful to Poompavai and Lakshya Mittal for their help with sample collection and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Gowrisree V, R Sundararajan, IG Camarillo. Neem leaf collection and extract preparation: Gowrisree V. Viability and other Experiments: Jeya Shree T, IG Camarillo. Data Analysis: P Giri, Jeya Shree T, R Sundararajan. Manuscript: All.

Corresponding author

Correspondence to Raji Sundararajan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varadarajan, G., Thulasidas, J.S., Giri, P. et al. High-throughput, Label-free Proteomics Identifies Salient Proteins and Genes in MDA-MB-231 Cells Treated with Natural Neem-based Electrochemotherapy. Appl Biochem Biotechnol 194, 148–166 (2022). https://doi.org/10.1007/s12010-021-03787-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03787-3

Keywords

Navigation