Skip to main content

Advertisement

Log in

Valorization of Biomass to Furfural by Chestnut Shell-based Solid Acid in Methyl Isobutyl Ketone–Water–Sodium Chloride System

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, highly efficient production of furfural from available, abundant, inexpensive, and renewable lignocellulosic biomass has gained much attention by using biomass-based heterogeneous catalyst in an effective biphasic system. Using microwave-treated chestnut shell (MC-CNS) as biobased support, biomass-based catalyst (MC-Sn-CNS) was firstly synthesized for catalyzing biomass into furfural. The structure parameters of MC-Sn-CNS were measured by BET, SEM, XRD, and FT-IR. After systematical optimization, furfural yield reached 64.4% from corncob by MC-Sn-CNS (3.6 wt%) at 180 °C for 15 min in methyl isobutyl ketone (MIBK)–water (2:1, v:v) containing 200 mM NaCl. MC-Sn-CNS had high stability, which could be recycled for 7 batches. The yield of furfural from fresh corncob was 44.5–64.4%. The possible catalytic mechanism for synergistic catalysis of biomass to furfural by MC-Sn-CNS was expounded in MIBK–water–NaCl system. The results showed that green solvent (MIBK) and NaCl promoted the production of furfural from CC catalyzed by solid acid (MC-Sn-CNS). This study demonstrated an environmentally friendly strategy for efficiently utilizing corncob into furfural by CNS-based heterogeneous chemocatalyst in a green reaction media. Clearly, this newly synthesized biomass-based MC-Sn-CNS catalyst had potential application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

CNS:

Chestnut shells

CC:

Corncob

CPME:

Cyclopentyl methyl ether

DMSO:

Dimethyl sulfoxide

GVL:

γ-Valerolactone

THF:

Tetrahydrofuran

DBP:

Dibutyl phthalate

MIBK:

Methyl-isobutyl ketone

Me-THF:

2-Methyltetrahydrofuran

MC-CNS:

Microwave-treated CNS

MC-Sn-CNS:

Tin-based solid acid catalyst using microwave-treated CNS as carrier

CrI :

Crystallinity index

SSA:

Specific surface area

Y :

Furfural yield

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

FT-IR:

Fourier transform infrared spectroscopy

BET:

Brunauer–Emmett–Teller

References

  1. Zhang, R. Q., Ma, C. L., Shen, Y. F., Sun, J. F., Jiang, K., Jiang, Z. B., Dai, Y. J., & He, Y. C. (2020). Enhanced biosynthesis of furoic acid via the efective pretreatment of corncob into furfural in the biphasic media. Catalysis Letters, 150, 2220–2227.

    Article  CAS  Google Scholar 

  2. Zhao, Y., Lu, K. F., Xu, H., Zhu, L. J., & Wang, S. R. (2021). A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renewable & Sustainable Energy Reviews, 139, 110706.

    Article  CAS  Google Scholar 

  3. Mohazzab, B. F., Jaleh, B., Nasrollahzadeh, M., Khazalpour, S., Sajjadi, M., & Varma, R. S. (2020). Upgraded valorization of biowaste: Laser-assisted synthesis of Pd/Calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation. ACS Omega, 5, 5888–5899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, C. P., Nasrollahzadeh, M., Selva, M., Issaabadi, Z., & Luque, R. (2019). Waste-to-wealth: Biowaste valorization into valuable bio(nano)materials. Chemical Society Reviews, 48(18), 4791–4822.

    Article  CAS  PubMed  Google Scholar 

  5. Nasrollahzadeh, M., Bidgoli, N. S. S., Shafiei, N., & Momenbeik, F. (2021). Biomass valorization: Sulfated lignin-catalyzed production of 5-hydroxymethylfurfural from fructose. International Journal of Biological Macromolecules, 182, 59–64.

    Article  CAS  PubMed  Google Scholar 

  6. Sajjadi, M., Ahmadpoor, F., Nasrollahzadeh, M., & Ghafuri, H. (2021). Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. International Journal of Biological Macromolecules, 178, 394–423.

    Article  CAS  PubMed  Google Scholar 

  7. Nezafat, Z., Mohazzab, B. F., Jaleh, B., Nasrollahzadeh, M., Baran, T., & Shokouhimehr, M. (2021). A promising nanocatalyst: Upgraded Kraft lignin by titania and palladium nanoparticles for organic dyes reduction. Inorganic Chemistry Communications, 130, 108746.

    Article  CAS  Google Scholar 

  8. Nasrollahzadeh, M., Shafiei, N., Nezafat, Z., & Bidgoli, N. S. S. (2020). Recent progresses in the application of lignin derived (nano)catalysts in oxidation reactions. Molecular Catalysis, 489, 110942.

    Article  CAS  Google Scholar 

  9. Nasrollahzadeh, M., Bidgoli, N. S. S., Issaabadi, Z., Ghavamifar, Z., Baran, T., & Luque, R. (2020). Hibiscus Rosasinensis L. aqueous extract-assisted valorization of lignin: Preparation of magnetically reusable Pd NPs@Fe3O4-lignin for Cr(VI) reduction and Suzuki-Miyaura reaction in eco-friendly media. International Journal of Biological Macromolecules, 148, 265–275.

    Article  CAS  PubMed  Google Scholar 

  10. Natsir, T. A., & Shimazu, S. (2019). Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans. Fuel Processing Technology, 200, 106308.

    Article  CAS  Google Scholar 

  11. Xue, X. X., Di, J. H., He, Y. C., Wang, B. Q., & Ma, C. L. (2018). Effective utilization of carbohydrate in corncob to synthesize furfuralcohol by chemical-enzymatic catalysis in toluene-water media. Applied Biochemistry and Biotechnology, 185, 42–54.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, B., Xie, W. L., Wu, Y. T., Liu, J., Ma, S. W., Wang, T. P., Zheng, S., & Lu, Q. (2021). Mechanism study on the formation of furfural during zinc chloride-catalyzed pyrolysis of xylose. Fuel, 295, 120656.

    Article  CAS  Google Scholar 

  13. Qing, Q., Guo, Q., Zhou, L. L., Wan, Y. L., Xu, Y. Q., Ji, H. L., Gao, X. H., & Zhang, Y. (2016). Catalytic conversion of corncob and corncob pretreatment hydrolysate to furfural in a biphasic system with addition of sodium chloride. Bioresource Technology, 226, 247–254.

    Article  PubMed  CAS  Google Scholar 

  14. Lopes, M., Dussan, K., & Leahy, J. J. (2017). Enhancing the conversion of D-xylose into furfural at low temperatures using chloride salts as co-catalysts: Catalytic combination of AlCl3 and formic acid. Chemical Engineering Journal, 323, 278–286.

    Article  CAS  Google Scholar 

  15. Zhang, L. X., Tian, L., Sun, R. J., Liu, C., Kou, Q. Q., & Zuo, H. W. (2019). Transformation of corncob into furfural by a bifunctional solid acid catalyst. Bioresource Technology, 276, 60–64.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, X., Ma, C. L., Xu, J. X., Xu, J. H., & He, Y. C. (2020). Sulfonated vermiculite-mediated catalysis of reed (Phragmites communis) into furfural for enhancing the biosynthesis of 2-furoic acid with a dehydrogenase biocatalyst in a one-pot Manner. Energy & Fuels, 34(11), 14573–14580.

    Article  CAS  Google Scholar 

  17. Bureros, G. M. A., Tanjay, A. A., Cuizon, D. E. S., Go, A. W., Cabatingan, L. K., Agapay, R. C., & Ju, Y. H. (2019). Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renewable Energy, 138, 489–501.

    Article  CAS  Google Scholar 

  18. Farabi, M. S. A., Ibrahim, M. L., Rashid, U., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Conversion and Management, 181, 562–570.

    Article  CAS  Google Scholar 

  19. Chin, L. H., Abdullah, A. Z., & Hameed, B. H. (2012). Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. Chemical Engineering Journal, 183, 104–107.

    Article  CAS  Google Scholar 

  20. Han, Y., Ye, L., Gu, X., Zhu, P., & Lu, X. (2019). Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent. Industrial Crops & Products, 127, 88–93.

    Article  CAS  Google Scholar 

  21. Li, Q., Ma, C. L., Zhang, P. Q., Li, Y. Y., Zhu, X., & He, Y. C. (2021). Effective conversion of sugarcane bagasse to furfural by coconut shell activated carbon-based solid acid for enhancing whole-cell biosynthesis of furfurylamine. Industrial Crops & Products, 160, 113169.

    Article  CAS  Google Scholar 

  22. Gong, L., Xu, Z. Y., Dong, J. J., Li, H., Han, R. Z., Xu, G. C., & Ni, Y. (2019). Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresource Technology, 293, 122065.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, W., & H., Tu, Y. J., & Sheen, H. K. (2011).Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88(8), 2726–2734.

  24. Filiciotto, L., Balu, A. M., Van der Waal, J. C., & Luque, R. (2017). Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catalysis Today, 302, 2–15.

    Article  CAS  Google Scholar 

  25. Kim, H., Yang, S., & Kim, D. (2020). One-pot conversion of alginic acid into furfural using Amberlyst-15 as a solid acid catalyst in gamma-butyrolactone/water co-solvent system. Environmental Research, 187, 109667.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Q. L., Wang, C., Mao, J. Z., Ramaswamy, S., Zhang, X. M., & Xu, F. (2019). Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent. Industrial Crops & Products, 138, 111454.

    Article  CAS  Google Scholar 

  27. Teng, X. N., Si, Z. H., Li, S. F., Yang, Y. H., Wang, Z., Li, G. Z., Zhao, J., Cai, D., & Qin, P. Y. (2020). Tin-loaded sulfonated rape pollen for efficient catalytic production of furfural from corn stover. Industrial Crops & Products, 151, 112481.

    Article  CAS  Google Scholar 

  28. Zhou, N., Zhang, C., Cao, Y., Zhan, J. H., Fan, J. J., Clark, J. H., & Zhang, S. C. (2021). Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system. Journal of Cleaner Production, 31, 127780.

    Article  CAS  Google Scholar 

  29. Le Guenic, S., Delbecq, F., Ceballos, C., & Len, C. (2015). Microwave-assisted dehydration of D-xylose into furfural by diluted inexpensive inorganic salts solution in a biphasic system. Journal of Molecular Catalysis A: Chemical, 410, 1–7.

    Article  CAS  Google Scholar 

  30. Chen, S. S., Tang, J. H., Jing, X. Y., Liu, Y., Yuan, Y., & Zhou, S. G. (2016). A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting. Electrochimica Acta, 212, 883–889.

    Article  CAS  Google Scholar 

  31. He, Y. C., Liu, F., Di, J. H., Ding, Y., Zhu, Z. Z., Wu, Y. Q., Chen, L., Wang, C., Xue, Y. F., & Chong, G. G. (2016). Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Industrial Crops & Products, 81, 129–138.

    Article  CAS  Google Scholar 

  32. Jiang, C. X., Su, C., Yang, S. Y., Ma, C. L., & He, Y. C. (2018). One-pot co-catalysis of corncob with dilute hydrochloric acid and tin-based solid acid for the enhancement of furfural production. Bioresource Technology, 268, 315–322.

    Article  CAS  PubMed  Google Scholar 

  33. Mou, H. Y., Li, B., & Fardim, P. (2014). Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy & Fuels, 28, 4288–4293.

    Article  CAS  Google Scholar 

  34. Zhu, S. D., Wu, Y. X., Yu, Z. N., Liao, J. T., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40(9), 3082–3086.

    Article  CAS  Google Scholar 

  35. Teng, X. N., Si, Z. H., Li, S. F., Yang, Y. H., Wang, Z., Li, G. Z., Zhao, J., Cai, D., & Qin, P. Y. (2020). Tin-loaded sulfonated rape pollen for efficient catalytic production of furfural from corn stover. Industrial Crops and Products, 151, 112481.

    Article  CAS  Google Scholar 

  36. Zhu, S. D., Wu, Y. X., Yu, Z. N., Chen, Q. M., Wu, G. Y., Yu, F. Q., Wang, C. W., & Jin, S. W. (2006). Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosystems Engineering, 94(3), 437–442.

    Article  Google Scholar 

  37. Lee, C. B. T. L., Wu, T. Y., Cheng, C. K., Siow, L. F., & Chew, I. M. L. (2021). Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Industrial Crops and Products, 166, 113397.

    Article  CAS  Google Scholar 

  38. Hu, X., Lievens, C., & Li, C. Z. (2012). Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery. Chemsuschem, 5, 1427–1434.

    Article  CAS  PubMed  Google Scholar 

  39. He, Y. C., Ding, Y., Ma, C. L., Di, J. H., Jiang, C. X., & Li, A. T. (2017). One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 1, 3844–3850.

    Article  Google Scholar 

  40. Bhaumik, P., & Dhepe, P. L. (2014). Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Advances, 4, 26215–26221.

    Article  CAS  Google Scholar 

  41. Guo, X. Q., Guo, F., Li, Y. S., Zheng, Z. Q., Xing, Z. X., Zhu, Z. H., Liu, T., Zhang, X., & Jin, Y. (2018). Dehydration of D-xylose into furfural over bimetallic salts of heteropolyacid in DMSO/H2O mixture. Applied Catalysis, A: General, 558, 18–25.

    Article  CAS  Google Scholar 

  42. Molina, M. J. C., Mariscal, R., Ojeda, M., & Granados, M. L. (2012). Cyclopentyl methyl ether: A green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural. Bioresource Technology, 126, 321–327.

    Article  CAS  Google Scholar 

  43. Gurram, R. N., & Menkhaus, T. J. (2014). Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery. Applied Biochemistry and Biotechnology, 173(6), 1319–1335.

    Article  CAS  PubMed  Google Scholar 

  44. Qin, L. Z., & He, Y. C. (2019). Chemoenzymatic synthesis of furfuryl alcohol from biomass in tandem reaction system. Applied Biochemistry and Biotechnology, 190(4), 1289–1303.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, Z., Bai, X., Lusi, A., Jacoby, W. A., & Wan, C. (2019). One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresource Technology, 289, 121708.

Download references

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21978072), the Postgraduate Research & Practical Innovation Program of Jiangsu Province (KYCX21-2867) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB350003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: J. Zha. Data analysis: B. Fan. Software: J. He. Writing original manuscript: J. Zha. Review and revising manuscript: Y. He. Funding acquisition: Y. He, B. Fan, C. Ma. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Yu-Cai He or Cuiluan Ma.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Confict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jingjian Zha and Bo Fan contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, J., Fan, B., He, J. et al. Valorization of Biomass to Furfural by Chestnut Shell-based Solid Acid in Methyl Isobutyl Ketone–Water–Sodium Chloride System. Appl Biochem Biotechnol 194, 2021–2035 (2022). https://doi.org/10.1007/s12010-021-03733-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03733-3

Keywords

Navigation