Skip to main content

Advertisement

Log in

Enhanced Dissolution of 7-ADCA in the Presence of PGME for Enzymatic Synthesis of Cephalexin

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic catalysis has been recognized as a green alternative to classical chemical route for synthesis of cephalexin (CEX). However, its industrial practice has been severely limited by the low productivity due to the low solubility of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and high hydrolysis of D-phenylglycine methyl ester (PGME). In this work, the enhanced dissolution of 7-ADCA in the presence of PGME for efficient enzymatic synthesis of CEX was investigated. Results showed that the solubility of 7-ADCA in water could be improved by PGME. Moreover, supersaturated solution of 7-ADCA could be created in the presence of PGME by a pH shift strategy. The supersaturated solution of 7-ADCA possess good stability, which could be explained in terms of the inhibition of 7-ADCA precipitation due to the presence of PGME. The interaction between 7-ADCA and PGME is explored by spectroscopic determination and DFT analysis and the mechanism of enhanced dissolution of 7-ADCA in the presence of PGME is discussed and proposed. The feasibility of supersaturated solution of 7-ADCA for the enzymatic synthesis of CEX is evaluated. It was demonstrated that high conversion ratio (> 95.0%) and productivity (> 240.0 mmol/L/h) was obtained under a wide range of reaction conditions, indicating that the supersaturated solution system was highly superior to conventional homogeneous solution system. The information obtained in this work will be helpful to industrial production of CEX via enzymatic route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Bernardino, S. M., Fernandes, P., & Fonseca, L. P. (2010). Improved specific productivity in cephalexin synthesis by immobilized PGA in silica magnetic micro-particles. Biotechnology and Bioengineering, 107, 753–762.

    Article  CAS  PubMed  Google Scholar 

  2. Wegman, M. A., Janssen, M. H., van Rantwijk, F., & Sheldon, R. A. (2001). Towards biocatalytic synthesis of β-lactam antibiotics. Advanced Synthesis & Catalysis, 343, 559–576.

    Article  CAS  Google Scholar 

  3. Valencia, P., Flores, S., Wilson, L., & Illanes, A. (2012). Batch reactor performance for the enzymatic synthesis of cephalexin: Influence of catalyst enzyme loading and particle size. New Biotechnology, 29, 218–226.

    Article  CAS  PubMed  Google Scholar 

  4. Pan, X., Wang, L., Ye, J., Qin, S., & He, B. (2018). Efficient synthesis of β-lactam antibiotics with very low product hydrolysis by a mutant Providencia rettgeri penicillin G acylase. Applied Microbiology and Biotechnology, 102, 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  5. Ahn, Y. D., & Lee, J. H. (2018). Development of a polyaniline-coated monolith reactor for the synthesis of cephalexin using penicillin G acylase aggregates. Biotechnol. Bioproc. E., 23, 349–354.

    Article  CAS  Google Scholar 

  6. Vobecká, L., Tichá, L., Atanasova, A., Slouka, Z., Hasal, P., & Přibyl, M. (2020). Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment. Chemical Engineering Journal, 396, 125236.

    Article  Google Scholar 

  7. Mařík, K., Tichá, L., Vobecká, L., & Přibyl, M. (2020). Theoretical study on enzyme synthesis of cephalexin in a parallel-flow microreactor combined with electrically driven ATPS microextraction. Reaction Chemistry & Engineering, 5, 570–583.

    Article  Google Scholar 

  8. Schroën, C. G. P. H., Nierstrasz, V. A., Moody, H. M., Hoogschagen, M. J., Kroon, P. J., Bosma, R., Beeftink, H. H., Janssen, A. E. M., & Tramper, J. (2001). Modeling of the enzymatic kinetic synthesis of cephalexin-influence of substrate concentration and temperature. Biotechnology and Bioengineering, 73, 171–178.

    Article  PubMed  Google Scholar 

  9. Giordano, R. C., Ribeiro, M. P., & Giordano, R. L. (2006). Kinetics of β-lactam antibiotics synthesis by penicillin G acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization. Biotechnology Advances, 24, 27–41.

    Article  CAS  PubMed  Google Scholar 

  10. Fan, Y., Li, Y., & Liu, Q. (2021). Efficient enzymatic synthesis of cephalexin in suspension aqueous solution system. Biotechnology and Applied Biochemistry, 68, 136–147.

    Article  CAS  PubMed  Google Scholar 

  11. Li, D., Zhang, Y., Cheng, S., Gao, Q., & Wei, D. (2008). Enhanced enzymatic production of cephalexin at high substrate concentration with in situ product removal by complexation. Food Technology and Biotechnology, 46, 461–466.

    CAS  Google Scholar 

  12. McDonald, M. A., Bommarius, A. S., Rousseau, R. W., & Grover, M. A. (2019). Continuous reactive crystallization of β-lactam antibiotics catalyzed by penicillin G acylase. Part I: Model development. Computers & Chemical Engineering, 123, 331–343.

    Article  CAS  Google Scholar 

  13. Bruggink, A., Roos, E. C., & de Vroom, E. (1998). Penicillin acylase in the industrial production of beta-lactam antibiotics. Organic Process Research & Development, 2, 228–133.

    Article  Google Scholar 

  14. Li, S., & Cao, X. (2014). Enzymatic synthesis of cephalexin in recyclable aqueous two-phase systems composed by two pH responsive polymers. Biochemical Engineering Journal, 90, 301–306.

    Article  CAS  Google Scholar 

  15. Illanes, A., Cabrera, Z., Wilson, L., & Aguirre, C. (2003). Synthesis of cephaexin in ethylene glycol with glyoxyl-agarose immobilized penicillin acylase: Temperature and pH optimization. Process Biochemistry, 39, 111–117.

    Article  CAS  Google Scholar 

  16. Illanes, A., Anjari, M. S., Altamirano, C., & Aguirre, C. (2004). Optimization of cephalexin synthesis with immobilized penicillin acylase in ethylene glyeol medium at low temperatures. Journal of Molecular Catalysis. B, Enzymatic, 30, 95–103.

    Article  CAS  Google Scholar 

  17. Aguirre, C., Opazo, P., Venegas, M., Riveros, R., & Illanes, A. (2006). Low temperature effect on production of ampicillin and cephalexin in ethylene glycol medium with immobilized penicillin acylase. Process Biochemistry, 41, 1924–1931.

    Article  CAS  Google Scholar 

  18. Langen, V., de Vroom, L. M., van Rantwijk, E. F., & Sheldon, R. (1999). Enzymatic synthesis of β-lactam antibiotics using penicillin-G acylase in frozen media. FEBS Letters, 456, 89–92.

    Article  PubMed  Google Scholar 

  19. Aguirre, C., Toledo, M., Medina, V., & Illanes, A. (2002). Effect of cosolvent and pH on the kinetically controlled synthesis of cephalexin with immobilised penicillin acylase. Process Biochemistry, 38, 351–360.

    Article  CAS  Google Scholar 

  20. Hyun, C. K., Kim, J. H., & Ryu, D. D. (1993). Enhancement effect of water activity on enzymatic synthesis of cephalexin. Biotechnology and Bioengineering, 42, 800–806.

    Article  CAS  PubMed  Google Scholar 

  21. Hyun, C. K., Choi, J. H., Kim, J. H., & Ryu, D. D. (1993). Enhancement effect of polyethylene glycol on enzymatic synthesis of cephalexin. Biotechnology and Bioengineering, 41, 654–658.

    Article  CAS  PubMed  Google Scholar 

  22. Aguirre, C., Concha, I., Vergara, J., Riveros, R., & Illanes, A. (2010). Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems. Process Biochemistry, 45, 1163–1167.

    Article  CAS  Google Scholar 

  23. Cao, X., Zhu, J., Wei, D., & Hur, B. K. (2004). Biosynthesis of cephalexin in PEG400-ammonium sulfate and PEG400-magnesium sulfate aqueous two-phase systems. Journal of Microbiology and Biotechnology, 14, 62–67.

    CAS  Google Scholar 

  24. Wei, D. Z., Zhu, J. H., & Cao, X. J. (2002). Enzymatic synthesis of cephalexin in aqueous two-phase systems. Biochemical Engineering Journal, 11, 95–99.

    Article  CAS  Google Scholar 

  25. Schroën, C. G. P. H., Nierstrasz, V. A., Bosma, R., Kemperman, G. J., Strubel, M., Ooijkaas, L. P., Beeftink, H. H., & Tramper, J. (2002). In situ product removal during enzymatic cephalexin synthesis by complexation. Enzyme and Microbial Technology, 31, 264–273.

    Article  Google Scholar 

  26. Basso, A., Spizzo, P., Toniutti, M., Ebert, C., Linda, P., & Gardossi, L. (2006). Kinetically controlled synthesis of ampicillin and cephalexin in highly condensed systems in the absence of a liquid aqueous phase. Journal of Molecular Catalysis. B, Enzymatic, 39, 105–111.

    Article  CAS  Google Scholar 

  27. Illanes, A., Wilson, L., Corrotea, O., Tavernini, L., Zamorano, F., & Aguirre, C. (2007). Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. Journal of Molecular Catalysis. B, Enzymatic, 47, 72–78.

    Article  CAS  Google Scholar 

  28. Illanes, A., Altamirano, C., Fuentes, M., Zamorano, F., & Aguirre, C. (2005). Synthesis of cephalexin in organic medium at high substrate concentrations and low enzyme to substrate ratio. Journal of Molecular Catalysis. B, Enzymatic, 35, 45–51.

    Article  CAS  Google Scholar 

  29. Bahamondes, C., Wilson, L., Aguirre, C., & Illanes, A. (2012). Comparative study of the enzymatic synthesis of cephalexin at high substrate concentration in aqueous and organic media using statistical model. Biotechnology and Bioprocess Engineering, 17, 711–721.

    Article  CAS  Google Scholar 

  30. Illanes, A., Wilson, L., Altamirano, C., Cabrera, Z., Alvarez, L., & Aguirre, C. (2007). Production of cephalexin in organic medium at high substrate concentrations with CLEA of penicillin acylase and PGA-450. Enzyme and Microbial Technology, 40, 195–203.

    Article  CAS  Google Scholar 

  31. Illanes, A., Wilson, L., & Aguirre, C. (2009). Synthesis of cephalexin in aqueous medium with carrier-bound and carrier-free penicillin acylase biocatalysts. Applied Biochemistry and Biotechnology, 157, 98–110.

    Article  CAS  PubMed  Google Scholar 

  32. Youshko, M. I., Moody, H. M., Bukhanov, A. L., Boosten, W. H., & Švedas, V. K. (2004). Penicillin acylase-catalyzed synthesis of beta-lactam antibiotics in highly condensed aqueous systems: Beneficial impact of kinetic substrate supersaturation. Biotechnology and Bioengineering, 85, 323–329.

    Article  CAS  PubMed  Google Scholar 

  33. Youshko, M. I., van Langen, L. M., de Vroom, E., Moody, H. M., van Rantwijk, F., Sheldon, R. A., & Švedas, V. K. (2000). Penicillin acylase-catalyzed synthesis of ampicillin in “aqueous solution-precipitate” systems. High substrate concentration and supersaturation effect. Journal of Molecular Catalysis. B, Enzymatic, 10, 509–515.

    Article  CAS  Google Scholar 

  34. Raghavan, S. L., Trividic, A., Davis, A. F., & Hadgraft, J. (2001). Crystallization of hydrocortisone acetate: Influence of polymers. International Journal of Pharmaceutics, 212, 213–221.

    Article  CAS  PubMed  Google Scholar 

  35. Herbich, J., Waluk, J., Thummel, R. P., & Hung, C. Y. (1994). Mechanisms of fluorescence quenching by hydrogen bonding in various aza aromatics. Journal of Photochemistry and Photobiology A: Chemistry, 80, 157–160.

    Article  CAS  Google Scholar 

  36. Qian, S., Li, Z., Heng, W., Liang, S., Ma, D., Gao, Y., Zhang, J., & Wei, Y. (2016). Charge-assisted intermolecular hydrogen bond formed in coamorphous system is important to relieve the pH-dependent solubility behavior of lurasidone hydrochloride. RSC Advances, 6, 106396–106412.

    Article  CAS  Google Scholar 

  37. Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, 195727.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Martin, M. M., & Ware, W. R. (1978). Fluorescence quenching of carbazole by pyridine and substituted pyridines. Radiationless processes in the carbazole-amine hydrogen bonded complex. Journal of Physical Chemistry, 82, 2770–2776.

    Article  CAS  Google Scholar 

  39. Sanghvi, R., Evans, D., & Yalkowsky, S. H. (2007). Stacking complexation by nicotinamide: A useful way of enhancing drug solubility. International Journal of Pharmaceutics, 336, 35–41.

    Article  CAS  PubMed  Google Scholar 

  40. Rasool, A. A., Hussain, A. A., & Dittert, L. W. (1991). Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. Journal of pharmaceutical sciences, 80, 387–393.

    Article  CAS  PubMed  Google Scholar 

  41. Lim, L. Y., & Go, M. L. (2000). Caffeine and nicotinamide enhances the aqueous solubility of the antimalarial agent halofantrine. European Journal of Pharmaceutical Sciences, 10, 17–28.

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, H., & Sunada, H. (1998). Mechanistic studies on hydrotropic solubilization of nifedipine in nicotinamide solution. Chemical & Pharmaceutical Bulletin, 46, 125–130.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key R&D Program of China (No. 2021YFC2101000) and Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China (No. 2020–0107-3–1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, data curation, formal analysis, writing-original draft, writing-review, and editing were performed by Yixiao Fan. Methodology, formal analysis, writing-review, and editing were performed by Yingbo Li. Funding acquisition, project administration, resources, supervision, validation, writing-review, and editing were performed by Qingfen Liu.

Corresponding authors

Correspondence to Yingbo Li or Qingfen Liu.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants performed or animals by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 899 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Li, Y. & Liu, Q. Enhanced Dissolution of 7-ADCA in the Presence of PGME for Enzymatic Synthesis of Cephalexin. Appl Biochem Biotechnol 194, 1682–1698 (2022). https://doi.org/10.1007/s12010-021-03705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03705-7

Keywords

Navigation