Skip to main content
Log in

Synthesis of Cephalexin in Aqueous Medium with Carrier-bound and Carrier-free Penicillin Acylase Biocatalysts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of very high substrate concentrations favors the kinetically controlled synthesis of cephalexin with penicillin acylase (PA) not only by Michaelian considerations, but also because water activity is depressed, so reducing the rates of the competing reactions of product and acyl donor hydrolysis. Commercial PGA-450, glyoxyl agarose immobilized (PAIGA) and carrier-free cross-linked enzyme aggregates of penicillin acylase (PACLEA) were tested in aqueous media at concentrations close to the solubility of nucleophile and at previously determined enzyme to nucleophile and acid donor to nucleophile ratios. The best temperature and pH were determined for each biocatalyst based on an objective function considering conversion yield, productivity, and enzyme stability as evaluation parameters. Stability was higher with PAIGA and specific productivity higher with PACLEA, but best results based on such objective function were obtained with PGA-450. Yields were stoichiometric and productivities higher than those previously reported in organic medium, which implies significant savings in terms of costs and environmental protection. At the optimum conditions for the selected biocatalyst, operational stability was determined in sequential batch reactor operation. The experimental information gathered is being used for a technical and economic evaluation of an industrial process for enzymatic production of cephalexin in aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Švedas, V., Savchenko, M., Beltser, A., & Guranda, D. (1996). Annals of the New York Academy of Sciences, 799, 659–669.

    Article  Google Scholar 

  2. Fité, M., Capellas, M., Benaiges, M., Caminal, G., Clapés, P., & Alvaro, G. (1997). Biocatalysis and Biotransformation, 15, 317–332.

    Google Scholar 

  3. van Langen, L., Oosthoek, N., Guranda, D., van Rantwijk, F., Švedas, V., & Sheldon, R. (2000). Tetrahedron: Asymmetry, 11, 4593–4600.

    Article  Google Scholar 

  4. Lindsay, J., Clark, D., & Dordick, J. (2004). Biotechnology and Bioengineering, 85(5), 553–560.

    Article  CAS  Google Scholar 

  5. Liu, S., Wei, D., Song, Q., Zhang, Y., & Wang, X. (2006). Bioprocess and Biosystems Engineering, 28, 285–289.

    Article  CAS  Google Scholar 

  6. Li, D., Cheng, S., Wei, D., Ren, Y., & Zhang, D. (2007). Biotechnology Letters, 29, 1285–1830.

    Google Scholar 

  7. Wegman, M., Janssen, M., van Rantwijk, F., & Sheldon, B. (2001). Advanced Synthesis & Catalysis, 343, 559–576.

    Article  CAS  Google Scholar 

  8. Nierstrasz, V., Schroën, C., Bosma, R., Kroon, P., Beeftink, R., Janssen, A., et al. (1999). Biocatalysis and Biotransformation, 17, 209–223.

    Article  CAS  Google Scholar 

  9. Schroën, C., Nierstrasz, V., Kroon, P., Bosma, R., Janssen, A., Beeftink, R., et al. (1999). Biocatalysis and Biotransformation, 24, 489–506.

    Google Scholar 

  10. Hernández-Jústiz, O., Terreni, M., Pagani, G., García, J., Guisán, J., & Fernández-Lafuente, R. (1999). Enzyme and Microbial Technology, 25, 336–343.

    Article  Google Scholar 

  11. Schroën, C., Nierstrasz, V., Moody, H., Hoogschagen, M., Kroon, P., Bosma, R., et al. (2001). Biotechnology and Bioengineering, 73, 171–178.

    Article  Google Scholar 

  12. Kasche, V. (1986). Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of b-lactam antibiotics, peptides and other condensation products. Enzyme and Microbial Technology, 8, 4–16.

    Article  CAS  Google Scholar 

  13. Schroën, C., Nierstrasz, V., Bosma, R., Kroon, P., Tjeersdma, P., de Vroom, E., et al. (2002). Biotechnology and Bioengineering, 80, 144–154.

    Article  CAS  Google Scholar 

  14. Illanes, A., & Wilson, L. (2000). Chimica Oggi/ Chemistry Today, 24(5), 27–30.

    Google Scholar 

  15. Sheldon, R. A. (2007). Enzyme immobilisation: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 387–394.

    Article  CAS  Google Scholar 

  16. Janssen., M. (2006). http://repository.tudelft.nl/file/200584/169747 ISBN:90-9020754-6.

  17. Gavrilescu, M., & Chisti, Y. (2005). Biotechnology—a sustainable alternative for chemical industry. Biotechnology Advances, 23, 471–499.

    Article  CAS  Google Scholar 

  18. Nam, D., Kim, C., & Ryu, D. (1985). Reaction kinetics of cephalexin synthesizing enzyme from Xanthomonas citri. Biotechnology and Bioengineering, 27, 953–960.

    Article  CAS  Google Scholar 

  19. Kheirolomoom, A., Ardjmand, M., Fazelina, H., & Zakeri, A. (2001). Process Biochemistry, 36, 1095–1101.

    Article  CAS  Google Scholar 

  20. Youshko, M., Bukhanov, A., & Švedas, V. (2003). Biochemist (Moscow), 68(3), 334–338.

    Article  CAS  Google Scholar 

  21. Illanes, A., Rodríguez, F., Bahamondes, C., & Altamirano, C. (2005). Biochemical Engineering Journal, 24, 209–215.

    Article  CAS  Google Scholar 

  22. Giordano, R. C., Ribeiro, M., & Giordano, R. L. (2006). Biotechnology Advances, 24, 27–41.

    Article  CAS  Google Scholar 

  23. Fernández-Lafuente, R., Rosell, C., Caanan-Haden, L., Rodes, L., & Guisán, J. (1999). Enzyme and Microbial Technology, 24, 96–103.

    Article  Google Scholar 

  24. Terreni, M., Pagani, G., Ubiali, D., Fernandez-Lafuente, R., Mateo, C., & Guisán, J. (2001). Bioorganic & Medicinal Chemistry Letters, 11, 2429–2432.

    Article  CAS  Google Scholar 

  25. Basso, A., De Martin, L., Ebert, C., Gardossi, L., Linda, P., & Sibilla, F. (2003). Tetrahedron Letters, 44, 5889–5891.

    Article  CAS  Google Scholar 

  26. Bryjak, J., & Trochimczuk, A. (2006). Enzyme and Microbial Technology, 39, 573–578.

    Article  CAS  Google Scholar 

  27. Montes, T., Grazú, V., Manso, I., Galán, B., López-Gallego, F., González, R., et al. (2007). Advanced Synthesis & Catalysis, 349, 459–464.

    Article  CAS  Google Scholar 

  28. Mateo, C., Palomo, J., van Langen, L., van Rantwijk, F., & Sheldon, R. (2004). Biotechnology and Bioengineering, 86, 273–276.

    Article  CAS  Google Scholar 

  29. Roy, J., & Abraham, T. (2004). Chemical Reviews, 104(9), 3705–3721.

    Article  CAS  Google Scholar 

  30. Rajendhran, J., & Gunasekaran, P. (2007). Letters in Applied Microbiology, 44, 43–49.

    Article  CAS  Google Scholar 

  31. Alvaro, G., Fernández-Lafuente, R., Blanco, R., & Guisán, J. (1990). Applied Biochemistry and Biotechnology, 26, 181–195.

    Article  CAS  Google Scholar 

  32. Cao, L., van Langen, L., van Rantwijk, F., & Sheldon, R. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 665–670.

    Article  CAS  Google Scholar 

  33. Abian, A., Wilson, L., Mateo, C., Fernández-Lorente, G., Palomo, J., Fernández-Lafuente, R., et al. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19–20, 295–303.

    Article  Google Scholar 

  34. Wilson, L., Illanes, A., Abian, O., Pessela, B., Fernández-Lafuente, R., & Guisán, J. (2004). Biomacromolecules, 5, 852–857.

    Article  CAS  Google Scholar 

  35. Estruch, I., Tagliani, A., Guisán, J., Fernández-Lafuente, R., Alcántara, A., Toma, L., et al. (2007). Enzyme and Microbial Technology, 42, 121–129.

    Article  CAS  Google Scholar 

  36. Terreni, M., Ubiali, D., Bavaro, T., Pregnolato, M., Fernández-Lafuente, R., & Guisán, J. (2007). Applied Microbiology and Biotechnology, 77, 579–587.

    Article  CAS  Google Scholar 

  37. Illanes, A., Cabrera, Z., Wilson, L., & Aguirre, C. (2003). Process Biochemistry, 39(1), 111–117.

    Article  CAS  Google Scholar 

  38. Illanes, A., Altamirano, C., Fuentes, M., Zamorano, F., & Aguirre, C. (2005). Journal of Molecular Catalysis. B, Enzymatic, 35(1–3), 45–51.

    Article  CAS  Google Scholar 

  39. Illanes, A., Wilson, L., Caballero, E., Fernández-Lafuente, R., & Guisán, J. M. (2006). Journal of Applied Biochemistry and Biotechnology, 133, 189–2002.

    Article  CAS  Google Scholar 

  40. Illanes, A., Wilson, L., Altamirano, C., Cabrera, Z., Alvarez, L., & Aguirre, C. (2007). Enzyme and Microbial Technology, 40, 195–203.

    Article  CAS  Google Scholar 

  41. Illanes, A., Anjarí, S., Altamirano, C., & Aguirre, C. (2004). Journal of Molecular Catalysis. B, Enzymatic, 30, 95–103.

    Article  CAS  Google Scholar 

  42. Arroyo, M., Torres-Guzmán, R., de la Mata, I., Castillón, M., & Acebal, C. (2000). Biotechnology Progress, 16, 368–371.

    Article  CAS  Google Scholar 

  43. Illanes, A., & Fajardo, A. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 587–595.

    Article  CAS  Google Scholar 

  44. Illanes, A., Anjarí, S., Arrieta, R., & Aguirre, C. (2002). Applied Biochemistry and Biotechnology, 97, 165–179.

    Article  CAS  Google Scholar 

  45. Youshko, M., & Švedas, V. (2000). Biochemistry (Moscow), 65, 1367–1375.

    Article  CAS  Google Scholar 

  46. Youshko, M., van Langen, L., de Vroom, E., Moody, H., van Rantwijk, F., Sheldon, R., et al. (2000). Penicillin acylase-catalyzed synthesis of ampicillin in “aqueous solution-precipitate” system. High substrate concentration and supersaturation effect. Journal of Molecular Catalysis. B, Enzymatic, 10, 509–515.

    Article  CAS  Google Scholar 

  47. Mateo, C., Palomo, J., Fernández-Lorente, G., Guisán, J., & Fernández-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  48. Pedroche, J., Yust, M., Mateo, C., Fernández-Lafuente, R., Girón-Calle, J., Alaiz, M., et al. (2007). Enzyme and Microbial Technology, 40, 1160–1166.

    Article  CAS  Google Scholar 

  49. Estruch, I., Tagliani, A., Guisán, J., Fernández-Lafuente, R., Alcántara, A., Toma, L., et al. (2008). Enzyme and Microbial Technology, 42, 121–129.

    Article  CAS  Google Scholar 

  50. Dalal, S., Kapoor, M., & Gupta, M. (2007). Journal of Molecular Catalysis. B, Enzymatic, 44, 128–132.

    Article  CAS  Google Scholar 

  51. Sheldon, R., Sorgedrager, M., & Janssen, M. (2007). Chemistry Today, 25(1), 62–67.

    CAS  Google Scholar 

  52. Illanes, A., Wilson, L., Corrotea, O., Tavernini, L., Zamorano, F., & Aguirre, C. (2007). Journal of Molecular Catalysis. B, Enzymatic, 47, 72–78.

    Article  CAS  Google Scholar 

  53. Illanes, A., & Wilson, L. (2003). Enzyme reactor design under thermal inactivation. Critical Reviews in Biotechnology, 23, 61–93.

    Article  CAS  Google Scholar 

  54. Aguirre, C., Toledo, M., Medina, V., & Illanes, A. (2002). Process Biochemistry, 38(3), 351–360.

    Article  CAS  Google Scholar 

  55. Baldaro, E. (1991). In U. Pandit (ed.), Chemistry in healthcare and technology. Plenum Press, New York, pp. 237–240.

  56. Aguirre, C., Opazo, P., Venegas, M., Riveros, R., & Illanes, A. (2006). Process Biochemistry, 41, 1924–1931.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Grant 1060428 from Fondecyt, Chile. The authors wish to thank Ms. Rosa Arrieta for her valuable analytical support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Illanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illanes, A., Wilson, L. & Aguirre, C. Synthesis of Cephalexin in Aqueous Medium with Carrier-bound and Carrier-free Penicillin Acylase Biocatalysts. Appl Biochem Biotechnol 157, 98–110 (2009). https://doi.org/10.1007/s12010-008-8255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8255-7

Keywords

Navigation