Skip to main content
Log in

Xylooligosaccharide Production with Low Xylose Release Using Crude Xylanase from Aureobasidium pullulans: Effect of the Enzymatic Hydrolysis Parameters

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylooligosaccharides (XOS) are non-digestible and fermentable oligomers that stand out for their efficient production by enzymatic hydrolysis and beneficial effects on human health. This study aimed to investigate the influence of the main reaction parameters of the beechwood xylan hydrolysis using crude xylanase from Aureobasidium pullulans CCT 1261, thus achieving the maximum XOS production. The effects of temperature (40 to 50 °C), reaction time (12 to 48 h), type of agitation, substrate concentration (1 to 6%, w/v), xylanase loading (100 to 300 U/g xylan), and pH (4.0 to 6.0) on the XOS production were fully evaluated. The most suitable conditions for XOS production included orbital shaking of 180 rpm, 40 °C, and 24 h of reaction. High contents of total XOS (10.1 mg/mL) and XOS with degree of polymerization (DP) of 2–3 (9.7 mg/mL), besides to a high percentage of XOS (99.1%), were obtained at 6% (w/v) of beechwood xylan, xylanase loading of 260 U/g xylan, and pH 6.0. The establishment of the best hydrolysis conditions allowed increasing both the content of total XOS 1.5-fold and the percentage of XOS by 9.4%, when compared to the initial production (6.7 mg/mL and 89.7%, respectively). Thus, this study established an efficient enzymatic hydrolysis process that results in a hydrolysate containing XOS with potential prebiotic character (i.e., rich in XOS with DP 2–3) and low xylose amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  Google Scholar 

  2. Figueiredo, F. C., Ranke, F. F. de B., & Oliva-Neto, P. (2020). Evaluation of xylooligosaccharides and fructooligosaccharides on digestive enzymes hydrolysis and as a nutrient for different probiotics and Salmonella typhimurium. LWT - Food Science and Technology, 118(October 2019), 108761. https://doi.org/10.1016/j.lwt.2019.108761

  3. Paiva, I. H. R., Duarte-Silva, E., & Peixoto, C. A. (2020). The role of prebiotics in cognition, anxiety, and depression. European Neuropsychopharmacology, 34, 1–18. https://doi.org/10.1016/j.euroneuro.2020.03.006

    Article  PubMed  CAS  Google Scholar 

  4. Belsito, P. C., Ferreira, M. V. S., Cappato, L. P., Cavalcanti, R. N., Vidal, V. A. S., Pimentel, T. C., Esmerinod, E. A., Balthazar, C. F., Neto, M. I. B., Tavares, P. B., Zacarchencon, M. Q., Freitas, M. C., Silva, R. S. L., Pastore, G. M., Pollonio, M. A. R., & Cruz, A. G. (2017). Manufacture of Requeijão cremoso processed cheese with galactooligosaccharide. Carbohydrate Polymers, 174, 869–875. https://doi.org/10.1016/j.carbpol.2017.07.021

    Article  PubMed  CAS  Google Scholar 

  5. Costa, M. F., Pimentel, T. C., Guimaraes, J. T., Balthazar, C. F., Rocha, R. S., Cavalcanti, R. N., Esmerino, E. A., Freitas, M. Q., Raices, R. S. L., Silva, M. C., & Cruz, A. G. (2019). Impact of prebiotics on the rheological characteristics and volatile compounds of Greek yogurt. LWT - Food Science and Technology, 105(January), 371–376. https://doi.org/10.1016/j.lwt.2019.02.007

    Article  CAS  Google Scholar 

  6. Fernandes, L. M., Guimarães, J. T., Silva, R., Rocha, R. S., Coutinho, N. M., Balthazar, C. F., Calvacanti, R. N., Piler, C. W., Pimentel, T. C., Neto, R. P. C., Tavares, M. I., Esmerino, E. A., Freitas, M. Q., Silva, M. C., Cruz, A. G. (2020). Whey protein films added with galactooligosaccharide and xylooligosaccharide. Food Hydrocolloids, 104 (September 2019). https://doi.org/10.1016/j.foodhyd.2020.105755

  7. MarketsandMarketsTM. (2018). Prebiotic Ingredients Market Worth 7.37 Billion USD by 2023. Retrieved January 20, 2021, from https://www.prnewswire.com/news-releases/prebiotic-ingredients-market-worth-737-billion-usd-by-2023-670471503.html/

  8. de Freitas, C., Carmona, E., & Brienzo, M. (2019). Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioactive Carbohydrates and Dietary Fibre, 18, 100184. https://doi.org/10.1016/j.bcdf.2019.100184

    Article  CAS  Google Scholar 

  9. IUB-IUPAC Joint Commission on Biochemical Nomenclature (JCBN). (1982). Abbreviated terminology of oligosaccharide chains - Recomendations 1980*. The Journal of Biological Chemistry, 257(7), 3347–3351. PMID: 7061480.

    Article  Google Scholar 

  10. Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088

    Article  PubMed  CAS  Google Scholar 

  11. Aachary, A. A., & Prapulla, S. G. (2011). Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety, 10(1), 2–16. https://doi.org/10.1111/j.1541-4337.2010.00135.x

    Article  CAS  Google Scholar 

  12. Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62–71. https://doi.org/10.1016/j.bcdf.2014.12.003

    Article  CAS  Google Scholar 

  13. Wang, Y., Guo, Q., Douglas Goff, H., & LaPointe, G. (2019). Oligosaccharides: Structure, function and application. In Encyclopedia of Food Chemistry (pp. 202–207). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21585-0

  14. Amorim, C., Silvério, S. C., Cardoso, B. B., Alves, J. I., Pereira, M. A., & Rodrigues, L. R. (2020). In vitro assessment of prebiotic properties of xylooligosaccharides produced by Bacillus subtilis 3610. Carbohydrate Polymers, 229, 115460. https://doi.org/10.1016/j.carbpol.2019.115460

  15. Nieto-domínguez, M., De Eugenio, L. I., York-durán, M. J., Rodríguez-colinas, B., Plou, F. J., Chenoll, E., Pardo, E., Codoñer, F., & Martínez, M. J. (2017). Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase. Food Chemistry, 232, 105–113. https://doi.org/10.1016/j.foodchem.2017.03.149

    Article  PubMed  CAS  Google Scholar 

  16. Finegold, S. M., Li, Z., Summanen, P. H., Downes, J., Thames, G., Corbett, K., Dowd, S., Krak, M., & Heber, D. (2014). Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food and Function, 5(3), 436–445. https://doi.org/10.1039/c3fo60348b

  17. Singh, R. D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5, 19–30. https://doi.org/10.1016/j.bcdf.2014.11.003

    Article  CAS  Google Scholar 

  18. Guerreiro, I., Oliva-Teles, A., & Enes, P. (2015). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture, 441, 57–63. https://doi.org/10.1016/j.aquaculture.2015.02.015

    Article  CAS  Google Scholar 

  19. Pourabedin, M., Chen, Q., Yang, M. M., & Zhao, X. (2017). Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS microbiology ecology, 93(1), 1–11. https://doi.org/10.1093/femsec/fiw226

    Article  CAS  Google Scholar 

  20. Valls, C., Pastor, F. I. J., Vidal, T., Roncero, M. B., Díaz, P., Martínez, J., & Valenzuela, S. V. (2018). Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydrate Polymers, 194(December 2017), 43–50. https://doi.org/10.1016/j.carbpol.2018.04.028

    Article  PubMed  CAS  Google Scholar 

  21. Yu, X., Yin, J., Li, L., Luan, C., Zhang, J., Zhao, C., & Li, S. (2015). Prebiotic potential of xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus. Journal of Microbiology and Biotechnology, 25(7), 1084–1092. https://doi.org/10.4014/jmb.1501.01022

    Article  PubMed  CAS  Google Scholar 

  22. Food and Drug Administration (2013). Generally Recognized as Safe (GRAS) - GRN 458. Retrieved December 15, 2020, from https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/

  23. Moniz, P., Ho, A. L., Duarte, L. C., Kolida, S., Rastall, R. A., Pereira, H., & Carvalheiro, F. (2016). Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw. Carbohydrate Polymers, 136, 466–473. https://doi.org/10.1016/j.carbpol.2015.09.046

    Article  PubMed  CAS  Google Scholar 

  24. Surek, E., & Buyukkileci, A. O. (2017). Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydrate Polymers, 174, 565–571. https://doi.org/10.1016/j.carbpol.2017.06.109

    Article  PubMed  CAS  Google Scholar 

  25. Akpinar, O., Erdogan, K., & Bostanci, S. (2009). Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydrate Research, 344(5), 660–666. https://doi.org/10.1016/j.carres.2009.01.015

    Article  PubMed  CAS  Google Scholar 

  26. Guido, E. S., Silveira, J. T., & Kalil, S. J. (2019). Enzymatic production of xylooligosaccharides from beechwood xylan: Effect of xylanase preparation on carbohydrate profile of the hydrolysates. International Food Research Journal, 26(2), 713–721.

    CAS  Google Scholar 

  27. Ávila, P. F., Franco Cairo, J. P. L., Damasio, A., Forte, M. B. S., & Goldbeck, R. (2020). Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Research International, 128(March 2019), 108702. https://doi.org/10.1016/j.foodres.2019.108702

  28. Amorim, C., Silvério, S. C., & Rodrigues, L. R. (2019). One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing Trichoderma species. Food Chemistry, 270(March 2018), 86–94. https://doi.org/10.1016/j.foodchem.2018.07.080

    Article  PubMed  CAS  Google Scholar 

  29. Reque, P. M., Pinilla, C. M. B., Gautério, G. V., Kalil, S. J., & Brandelli, A. (2019). Xylooligosaccharides production from wheat middlings bioprocessed with Bacillus subtilis. Food Research International, 126, 108673. https://doi.org/10.1016/j.foodres.2019.108673

    Article  PubMed  CAS  Google Scholar 

  30. Chapla, D., Pandit, P., & Shah, A. (2012). Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology, 115, 215–221. https://doi.org/10.1016/j.biortech.2011.10.083

    Article  PubMed  CAS  Google Scholar 

  31. Yang, H., Wang, K., Song, X., & Xu, F. (2011). Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa. Bioresource Technology, 102(14), 7171–7176. https://doi.org/10.1016/j.biortech.2011.03.110

    Article  PubMed  CAS  Google Scholar 

  32. Reddy, S. S., & Krishnan, C. (2016). Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. LWT - Food Science and Technology, 65, 237–245. https://doi.org/10.1016/j.lwt.2015.08.013

    Article  CAS  Google Scholar 

  33. Singh, R. D., Banerjee, J., Sasmal, S., Muir, J., & Arora, A. (2018). High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresource Technology, 256(January), 110–117. https://doi.org/10.1016/j.biortech.2018.02.009

    Article  PubMed  CAS  Google Scholar 

  34. Li, H. Y., Wang, B., Wen, J. L., Cao, X. F., Sun, S. N., & Sun, R. C. (2018). Availability of four energy crops assessing by the enzymatic hydrolysis and structural features of lignin before and after hydrothermal treatment. Energy Conversion and Management, 155(October 2017), 58–67. https://doi.org/10.1016/j.enconman.2017.10.089

    Article  CAS  Google Scholar 

  35. Gowdhaman, D., & Ponnusami, V. (2015). Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. International Journal of Biological Macromolecules, 79, 595–600. https://doi.org/10.1016/j.ijbiomac.2015.05.046

    Article  PubMed  CAS  Google Scholar 

  36. Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219–228. https://doi.org/10.1016/S1369-5274(03)00056-0

    Article  PubMed  CAS  Google Scholar 

  37. Sheng, P., Xu, J., Saccone, G., Li, K., & Zhang, H. (2014). Discovery and characterization of endo-xylanase and β-xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. Journal of Molecular Catalysis B: Enzymatic, 105, 33–40. https://doi.org/10.1016/j.molcatb.2014.03.019

  38. Gautério, G. V., Vieira, M. C., Gonçalves, L. G. G., Hübner, T., Sanzo, A. V. L., & Kalil, S. J. (2018). Production of xylanolitic enzymes and xylooligosaccharides by Aureobasidium pullulans CCT 1261 in submerged cultivation. Industrial Crops and Products, 125(August), 335–345. https://doi.org/10.1016/j.indcrop.2018.09.011

    Article  CAS  Google Scholar 

  39. Gautério, G. V., da Silva, L. G. G., Hübner, T., da Rosa Ribeiro, T., & Kalil, S. J. (2020). Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatalysis and Agricultural Biotechnology, 23(January). https://doi.org/10.1016/j.bcab.2020.101511

  40. Machado, T. B., Corrêa Junior, L. C. S., de Mattos, M. V. C. da V., Gautério, G. V., & Kalil, S. J. (2021). Sequential alkaline and ultrasound pretreatments of oat hulls improve xylanase production by Aureobasidium pullulans in submerged cultivation. Waste and Biomass Valorization, (0123456789). https://doi.org/10.1007/s12649-021-01425-x

  41. Gautério, G. V., da Silva, L. G. G., Hübner, T., da Ribeiro, T., & R., & Kalil, S. J. . (2021). Xylooligosaccharides production by crude and partially purified xylanase from Aureobasidium pullulans: Biochemical and thermodynamic properties of the enzymes and their application in xylan hydrolysis. Process Biochemistry, 104(October 2020), 161–170. https://doi.org/10.1016/j.procbio.2021.03.009

    Article  CAS  Google Scholar 

  42. Azelee, N. I. W., Jahim, J. M., Ismail, A. F., Fuzi, S. F. Z. M., Rahman, R. A., & Illias, R. M. (2016). High xylooligosaccharides (XOS) production from pretreated kenaf stem by enzyme mixture hydrolysis. Industrial Crops and Products, 81, 11–19. https://doi.org/10.1016/j.indcrop.2015.11.038

    Article  CAS  Google Scholar 

  43. Brienzo, M., Carvalho, W., & Milagres, A. M. F. (2010). Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Applied Biochemistry and Biotechnology, 162(4), 1195–1205. https://doi.org/10.1007/s12010-009-8892-5

    Article  PubMed  CAS  Google Scholar 

  44. Mobarec, H., Villagomez, R., Nordberg Karlsson, E., & Linares-Pastén, J. A. (2021). Microwave-assisted xylanase reaction: Impact in the production of prebiotic xylooligosaccharides. RSC Advances, 11(20), 11882–11888. https://doi.org/10.1039/d1ra00449b

    Article  CAS  Google Scholar 

  45. Faryar, R., Linares-Pastén, J. A., Immerzeel, P., Mamo, G., Andersson, M., Stalbrand, H., Mattiasson, B., & Karlsson, E. N. (2014). Production of prebiotic xylooligosaccharides from alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food and Bioproducts Processing, 3, 1–10. https://doi.org/10.1016/j.fbp.2014.11.004

    Article  CAS  Google Scholar 

  46. Aachary, A. A., & Prapulla, S. G. (2009). Value addition to corncob: Production and characterization of xylooligosaccharides from alkali pretreated lignin-saccharide complex using Aspergillus oryzae MTCC 5154. Bioresource Technology, 100(2), 991–995. https://doi.org/10.1016/j.biortech.2008.06.050

    Article  PubMed  CAS  Google Scholar 

  47. Boonchuay, P., Techapun, C., Seesuriyachan, P., & Chaiyaso, T. (2014). Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties. Food Science and Biotechnology, 23(5), 1515–1523. https://doi.org/10.1007/s10068-014-0207-0

    Article  CAS  Google Scholar 

  48. Rodrigues, M. I., & Iemma, A. F. (2012). Experimental design and process optimization (Second.). Cárita Editora.

  49. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270. https://doi.org/10.1016/0168-1656(92)90074-J

    Article  CAS  Google Scholar 

  50. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  51. Gullón, P., Moura, P., Esteves, M. P., Girio, F. M., Domínguez, H., & Parajó, J. C. (2008). Assessment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. Journal of Agricultural and Food Chemistry, 56(16), 7482–7487. https://doi.org/10.1021/jf800715b

    Article  PubMed  CAS  Google Scholar 

  52. Kim, Y. A., & Yoon, K. H. (2010). Characterization of a Paenibacillus woosongensis β-xylosidase/α-arabinofuranosidase produced by recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 20(12), 1711–1716. https://doi.org/10.4014/jmb.1010.10040

    Article  PubMed  CAS  Google Scholar 

  53. Bankeeree, W., Akada, R., Lotrakul, P., Punnapayak, H., & Prasongsuk, S. (2018). Enzymatic hydrolysis of black liquor xylan by a novel xylose-tolerant, thermostable β-xylosidase from a tropical strain of Aureobasidium pullulans CBS 135684. Applied Biochemistry and Biotechnology, 184(3), 919–934. https://doi.org/10.1007/s12010-017-2598-x

    Article  PubMed  CAS  Google Scholar 

  54. Dobberstein, J., & Emeis, C. (1991). Purification and characterization of β- xylosidase from Aureobasidium pullulans. Applied Microbiology and Biotechnology and Biotechnology, 2, 210–215. https://doi.org/10.1007/s12010-017-2598-x

    Article  CAS  Google Scholar 

  55. Ohta, K., Fujimoto, H., Fujii, S., & Wakiyama, M. (2010). Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. Journal of Bioscience and Bioengineering, 110(2), 152–157. https://doi.org/10.1016/j.jbiosc.2010.02.008

    Article  PubMed  CAS  Google Scholar 

  56. Akpinar, O., Erdogan, K., Bakir, U., & Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT - Food Science and Technology, 43(1), 119–125. https://doi.org/10.1016/j.lwt.2009.06.025

    Article  CAS  Google Scholar 

  57. Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., & Ellouz Chaabouni, S. (2015). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food and Bioproducts Processing, 94(August), 536–546. https://doi.org/10.1016/j.fbp.2014.07.012

    Article  CAS  Google Scholar 

  58. Surek, E., Buyukkileci, A. O., & Yegin, S. (2021). Processing of hazelnut (Corylus avellana L.) shell autohydrolysis liquor for production of low molecular weight xylooligosaccharides by Aureobasidium pullulans NRRL Y–2311–1 xylanase. Industrial Crops and Products, 161(January), 113212. https://doi.org/10.1016/j.indcrop.2020.113212

  59. Ajijolakewu, K. A., Peng, C., Keong, C., Abdullah, W., & Nadiah, W. (2017). Characterization of novel Trichoderma hemicellulase and its use to enhance downstream processing of lignocellulosic biomass to simple fermentable sugars. Biocatalysis and Agricultural Biotechnology, 11(October 2016), 166–175. https://doi.org/10.1016/j.bcab.2017.06.005

    Article  Google Scholar 

  60. Guido, E. S. (2016). Produção de xilo-oligossacarídeos por hidrólise enzimática de xilanas. PhD thesis, Universidade Federal do Rio Grande.

  61. Kiran, E. U., Akpinar, O., & Bakir, U. (2013). Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. Food and Bioproducts Processing, 91(4), 565–574. https://doi.org/10.1016/j.fbp.2012.12.002

    Article  CAS  Google Scholar 

  62. Yoon, K. Y., Woodams, E. E., & Hang, Y. D. (2006). Enzymatic production of pentoses from the hemicellulose fraction of corn residues. LWT - Food Science and Technology, 39(4), 388–392. https://doi.org/10.1016/j.lwt.2005.02.005

    Article  CAS  Google Scholar 

  63. Mazlan, N. A., Samad, K. A., Yussof, H. W., Saufi, S. M., & Jahim, J. (2019). Xylooligosaccharides from potential agricultural waste: Characterization and screening on the enzymatic hydrolysis factors. Industrial Crops and Products, 129(December 2018), 575–584. https://doi.org/10.1016/j.indcrop.2018.12.042

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)”—Finance Code 001, and the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”—grant numbers 423285/2018–1 and 304857/2018–1. The authors are also grateful to “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Fapergs)”—PROBIC—for the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

GVG: conceptualization, methodology, data curation, validation, formal analysis, investigation, writing—original draft, visualization. TH: investigation. TRR: investigation. APMZ: validation, writing—review and editing. SJK: conceptualization, resources, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Gabrielle Victoria Gautério.

Ethics declarations

Additional Declarations for Articles in Life Science Journals that Report the Results of Studies Involving Humans and/or Animals

Not applicable.

Ethics Approval (Include Appropriate Approvals Or Waivers)

Not applicable.

Consent to Participate (Include Appropriate Statements)

Not applicable.

Consent for Publication (Include Appropriate Statements)

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautério, G.V., Hübner, T., Ribeiro, T.d. et al. Xylooligosaccharide Production with Low Xylose Release Using Crude Xylanase from Aureobasidium pullulans: Effect of the Enzymatic Hydrolysis Parameters. Appl Biochem Biotechnol 194, 862–881 (2022). https://doi.org/10.1007/s12010-021-03658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03658-x

Keywords

Navigation