Skip to main content
Log in

Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid (ALA) is an essential intermediate for many organisms and has been considered for the applications of medical especially in photodynamic therapy of cancer recently. However, ALA production via chemical approach is complicated; hence, microbial manufacturing has received more attentions. In this study, a modular design to simultaneously express ALA synthase from Rhodobacter sphaeroides (RshemA), a non-specific ALA exporter (RhtA), and chaperones was first developed and discussed. The ALA production was significantly increased by coexpressing RhtA and RshemA. Besides, ALA was enhanced by the cofactor pyridoxal phosphate (PLP) which was supplied by expressing genes of pdxK and pdxY or direct addition. However, inclusion bodies of RshemA served as an obstacle; thus, chaperones DnaK and GroELS were introduced to reform the conformation of proteins and successfully improved ALA production. Finally, a plasmid-free strain RrGI, as the robust chassis, was established and a 6.23-fold enhancement on ALA biosynthesis and led to 7.47 g/L titer and 0.588 g/L/h productivity under the optimal cultural condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The data and materials that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. Sasaki, K., Watanabe, M., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58(1), 23–29.

    Article  CAS  PubMed  Google Scholar 

  2. Sasikala, C., Ramana, C. V., & Rao, P. R. (1994). 5-Aaminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnology Progress, 10(5), 451–459.

    Article  CAS  Google Scholar 

  3. Bhowmick, R., & Girotti, A. W. (2010). Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radical Biology & Medicine, 48(10), 1296–1301.

    Article  CAS  Google Scholar 

  4. Schneegurt, M. A., & Beale, S. I. (1988). Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate: purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiology, 86(2), 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, J. M., Russell, C. S., & Cosloy, S. D. (1989). Cloning and structure of the hemA gene of Escherichia coli K-12. Gene, 82(2), 209–217.

    Article  CAS  PubMed  Google Scholar 

  6. Jahn, D., Verkamp, E., & So, D. (1992). Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends in Biochemical Science, 17(6), 215–218.

    Article  CAS  Google Scholar 

  7. Schauer, S., Chaturvedi, S., Randau, L., Moser, J., Kitabatake, M., Lorenz, S., Verkamp, E., Schubert, W. D., Nakayashiki, T., Murai, M., Wall, K., Thomann, H. Y., Heinz, D. W., Inokuchi, H., Soll, D., & Jahn, D. (2002). Escherichia coli glutamyl-tRNA reductase trapping the thioester intermediate. Journal of Biology Chemistry, 277(50), 48657–48663.

    Article  CAS  Google Scholar 

  8. Zhang, J., Weng, H., Zhou, Z., Du, G., & Kang, Z. (2019). Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresource Technology, 274, 353–360.

    Article  CAS  PubMed  Google Scholar 

  9. Shemin, D., & Russell, C. S. (1953). δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. Journal of the American Chemical Society, 75(19), 4873–4874.

    Article  CAS  Google Scholar 

  10. Avissar, Y. J., Ormerod, J. G., & Beale, S. I. (1989). Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Archives of Microbiology, 151(6), 513–519.

    Article  CAS  PubMed  Google Scholar 

  11. Beale, S. I. (1970). The biosynthesis of δ-aminolevulinic acid in Chlorella. Plant Physiology, 45(4), 504–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andersen, T., Briseid, T., Nesbakken, T., Ormerod, J., Sirevag, R., & Thorud, M. (1983). Mechanisms of synthesis of 5-aminolevulinate in purple, green and blue-green bacteria. FEMS Microbiology Letter, 19(2-3), 303–306.

    Article  CAS  Google Scholar 

  13. Fu, W., Lin, J., & Cen, P. (2010). Expression of a hemA Gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Applied Biochemistry and Biotechnology, 160(2), 456–466.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, X. X., Wang, L., Wang, Y. J., & Cai, L. L. (2010). D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Applied Biochemistry and Biotechnology, 160(3), 822–830.

    Article  CAS  PubMed  Google Scholar 

  15. Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. (2011). Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13(5), 492–498.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J., Kang, Z., Ding, W., Chen, J., & Du, G. (2016). Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Applied Biochemistry and Biotechnology, 178(6), 1252–1262.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, P., Liu, W., Cheng, X., Wang, J., Wang, Q., & Qi, Q. (2016). A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Applied and Environmental Microbiology, 82(9), 2709–2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng, L., Zhang, Y., Fu, J., Mao, Y., Chen, T., Zhao, X., & Wang, Z. (2016). Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnology and Bioengineering, 113(6), 1284–1293.

    Article  CAS  PubMed  Google Scholar 

  19. Lou, J. W., Zhu, L., Wu, M. B., Yang, L. R., Lin, J. P., & Cen, P. L. (2014). High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J. Zhejiang Univ. Sci. B, 15(5), 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, J., Fu, W., & Cen, P. (2009). Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresource Technology, 100(7), 2293–2297.

    Article  CAS  PubMed  Google Scholar 

  21. Horwich, A. L., Farr, G. W., & Fenton, W. A. (2006). GroEL− GroES-mediated protein folding. Chemical Review, 106(5), 1917–1930.

    Article  CAS  Google Scholar 

  22. Yu, T. H., Yi, Y. C., Shih, I. T., & Ng, I. S. (2020). Enhanced 5-aminolevulinic acid production by coexpression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Applied Biochemistry and Biotechnology, 191(1), 299–312.

    Article  CAS  PubMed  Google Scholar 

  23. Ding, W., Weng, H., Du, G., Chen, J., & Kang, Z. (2017). 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 44(8), 1127–1135.

    Article  CAS  PubMed  Google Scholar 

  24. Tran, N. T., Pham, D. N., & Kim, C. J. (2019). Production of 5-aminolevulinic acid by recombinant Streptomyces coelicolor expressing hemA from Rhodobacter sphaeroides. Biotechnology and Bioprocess Engineering, 24(3), 488–499.

    Article  CAS  Google Scholar 

  25. Effendi, S. S. W., Tan, S. I., Ting, W. W., & Ng, I. S. (2021). Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. International Journal of Biological Macromolecules, 167, 326–334.

    Article  CAS  PubMed  Google Scholar 

  26. Haldimann, A., & Wanner, B. L. (2001). Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. Journal of Bacteriology, 183(21), 6384–6393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ting, W. W., Tan, S. I., & Ng, I. S. (2020). Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. Bioresource and Bioprocessing, 7(1), 54.

    Article  Google Scholar 

  28. Ng, I. S., Zhang, X., Zhang, Y., & Lu, Y. (2013). Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Applied Biochemistry and Biotechnology, 169(7), 2223–2235.

    Article  CAS  PubMed  Google Scholar 

  29. Ng, I. S., Zheng, X., Wang, N., Chen, B. Y., Zhang, X., & Lu, Y. (2014). Copper response of Proteus hauseri based on proteomic and genetic expression and cell morphology analyses. Applied Biochemistry and Biotechnology, 173(5), 1057–1072.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, J. Y., Xue, C., Tan, S. I., & Ng, I. S. (2021). Pyridoxal kinase PdxY mediated carbon dioxide assimilation to enhance the biomass in Chlamydomonas reinhardtii CC-400. Bioresource Technology, 322, 124530.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Y., Zhao, G., & Winkler, M. E. (1996). Identification of the pdxK gene that encodes pyridoxine (vitamin B6) kinase in Escherichia coli K-12. FEMS Microbiology Letters, 141(1), 89–95.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Y., Tsui, H. C. T., Man, T. K., & Winkler, M. E. (1998). Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5’-phosphate biosynthesis in Escherichia coli K-12. Journal of Bacteriology, 180(7), 1814–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue, C., Yu, T. H., & Ng, I. S. (2021). Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. Journal of the Taiwan Institute of Chemical Engineers, 120, 49–58.

  34. Tagami, H., Inada, T., Kunimura, T., & Aiba, H. (1995). Glucose lowers CRP* levels resulting in repression of the lac operon in cells lacking cAMP. Molecular Microbiology, 17(2), 251–258.

    Article  CAS  PubMed  Google Scholar 

  35. Moon, Y. M., Yang, S. Y., Choi, T. R., Jung, H. R., Song, H. S., Han, Y., Park, H. Y., Bhatiaa, S. K., Gurava, R., Park, K., Kim, J. S., & Yang, Y. H. (2019). Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5’-phosphate and ATP. Enzyme and Microbial Technology, 127(2019), 58–64.

    Article  CAS  PubMed  Google Scholar 

  36. Xue, C., Hsu, K. M., Ting, W. W., Huang, S. F., Lin, H. Y., Li, S. F., Chang, J. S., & Ng, I. S. (2020). Efficient biotransformation of L-lysine into cadaverine by strengthening pyridoxal 5’-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochemical Engineering Journal, 161, 107659.

    Article  CAS  Google Scholar 

  37. Summers, D. (1998). Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Molecular Microbiology, 29(5), 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  38. Szabo, A., Langer, T., Schröder, H., Flanagan, J., Bukau, B., & Hartl, F. U. (1994). The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proceeding of the National Academy of Science of the USA, 91(22), 10345–10349.

    Article  CAS  Google Scholar 

  39. Hoffmann, F., & Rinas, U. (2004). Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli (pp. 143–161). Springer, Berlin, Heidelberg: In Physiological stress responses in bioprocesses.

    Google Scholar 

  40. González-Montalbán, N., Carrió, M. M., Cuatrecasas, S., Arís, A., & Villaverde, A. (2005). Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. Journal of Biotechnology, 118(4), 406–412.

    Article  PubMed  CAS  Google Scholar 

  41. Cui, Z., Jiang, Z., Zhang, J., Jiang, X., Gong, K., Liang, Q., Wang, Q., & Qi, Q. (2019). Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. Journal of Agricultural and Food Chemistry, 67(5), 1478–1483.

    Article  CAS  PubMed  Google Scholar 

  42. Dong, H., Zhao, C., Zhang, T., Zhu, H., Lin, Z., Tao, W., Zhang, Y., & Li, Y. (2017). A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metabolic Engineering, 44, 284–292.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, H., Li, Y., Ma, Q., Li, Q., Jia, Z., Yang, B., Xue, Q., Fan, X., Zhang, C., Chen, N., & Xie, X. (2018). Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering, 49, 248–256.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Technology (MOST 108-2221-E-006-004-MY3 and MOST 108-2621-M-006-015) in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

ITS and ISN conceived the study. ITS performed all the experiments and original draft investigation. YCY performed part of the analytical method. ISN did methodology validation, supervised the experiments, prepared, review, and edited the manuscript.

Corresponding author

Correspondence to I-Son Ng.

Ethics declarations

Ethical Approval and Consent to Participate

All the authors have read and agreed the ethics for publishing the manuscript.

Consent for Publication

The authors approved the consent for publishing the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, IT., Yi, YC. & Ng, IS. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli. Appl Biochem Biotechnol 193, 2858–2871 (2021). https://doi.org/10.1007/s12010-021-03571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03571-3

Keywords

Navigation