Skip to main content
Log in

Paper-Based Enzymatic Colorimetric Assay for Rapid Malathion Detection

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Due to their unique properties, paper-based biosensors have attracted attention as inexpensive devices for on-site analysis. To achieve fast and sensitive detection of analytes, immobilization of enzymes with high apparent activities on paper is highly desirable; however, this is challenging. Herein, we report an improved approach to attach a malathion degrading enzyme, PoOPHM9, on paper via an interlocking network of Pluronic F127 (PF127)–poly(acrylic acid)–enzyme conjugates. The addition of PF127 improved retention of enzymatic activity as the apparent kinetic constant Vmax of the immobilized enzyme increased two-fold compared with the paper prepared without PF127. The PF127–poly(acrylic acid)–PoOPHM9 papers provided rapid colorimetric detection of malathion at 0.1–50 mM. The detection was completed within 5 min using a smartphone and image analysis software. As a proof-of-concept, malathion-contaminated water, plant, and apple samples were analyzed with the papers successfully. This material is promising for on-site rapid analysis of malathion-contaminated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Giudice, I., Coppolecchia, R., Merone, L., Porzio, E., Carusone, T., Mandrich, L., Worek, F., & Manco, G. (2015). An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination. Biotechnology and Bioengineering, 113, 724–734.

    Article  Google Scholar 

  2. EPA, Malathion. https://www.epa.gov/mosquitocontrol/malathion (accessed September 13, 2020).

  3. Mostafalou, S., & Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Archives of Toxicology, 91(2), 549–599.

    Article  CAS  Google Scholar 

  4. Cycon, M., Mrozik, A., & Piotrowska-Seget, Z. (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere, 172, 52–71.

    Article  CAS  Google Scholar 

  5. Hernandez, A. F., Gil, F., & Lacasana, M. (2017). Toxicological interactions of pesticide mixtures: an update. Archives of Toxicology, 91(10), 3211–3223.

    Article  CAS  Google Scholar 

  6. Sapahin, H. A., Makahleh, A., & Saad, B. (2019). Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. Arabian Journal of Chemistry, 12(8), 1934–1944.

    Article  CAS  Google Scholar 

  7. Harshit, D., Kothari, C., & Nrupesh, P. (2017). Organophosphorus pesticides determination by novel HPLC and spectrophotometric method. Food Chemistry, 230, 448–453.

    Article  CAS  Google Scholar 

  8. Chen, Q., & Fung, Y. (2010). Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables. Electrophoresis, 31(18), 3107–3114.

    Article  CAS  Google Scholar 

  9. Mishra, R. K., Istamboulie, G., Bhand, S., & Marty, J.-L. (2012). Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor. Analytica Chimica Acta, 745, 64–69.

    Article  CAS  Google Scholar 

  10. Arduini, F., Cinti, S., Caratelli, V., Amendola, L., Palleschi, G., & Moscone, D. (2019). Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosensors and Bioelectronics, 126, 346–354.

    Article  CAS  Google Scholar 

  11. Qiu, Z., Shu, J., & Tang, D. (2017). Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Analytical Chemistry, 89(9), 5152–5160.

    Article  CAS  Google Scholar 

  12. Boehle, K. E., Carrell, C. S., Caraway, J., & Henry, C. S. (2018). Paper-based enzyme competition assay for detecting falsified β-lactam antibiotics. ACS Sensors, 3(7), 1299–1307.

    Article  CAS  Google Scholar 

  13. Böhm, A., Trosien, S., Avrutina, O., Kolmar, H., & Biesalski, M. (2018). Covalent attachment of enzymes to paper fibers for paper-based analytical devices. Frontiers in Chemistry, 6, 214.

    Article  Google Scholar 

  14. Hossain, S. M., Luckham, R. E., McFadden, M. J., & Brennan, J. D. (2009). Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Analytical Chemistry, 81(21), 9055–9064.

    Article  CAS  Google Scholar 

  15. Hossain, S. M., Luckham, R. E., Smith, A. M., Lebert, J. M., Davies, L. M., Pelton, R. H., et al. (2009). Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Analytical Chemistry, 81(13), 5474–5483.

    Article  CAS  Google Scholar 

  16. Credou, J., & Berthelot, T. (2014). Cellulose: from biocompatible to bioactive material. Journal of Material Chemistry B, 2(30), 4767–4788.

    Article  CAS  Google Scholar 

  17. Sulaiman, S., Mokhtar, M. N., Naim, M. N., Baharuddin, A. S., & Sulaiman, A. (2015). A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Applied Biochemistry and Biotechnology, 175(4), 1817–1842.

    Article  CAS  Google Scholar 

  18. Xing, Q., Eadula, S. R., & Lvov, Y. M. (2007). Cellulose fiber−enzyme composites fabricated through layer-by-layer nanoassembly. Biomacromolecules, 8(6), 1987–1991.

    Article  CAS  Google Scholar 

  19. Kannan, B., Jahanshahi-Anbuhi, S., Pelton, R. H., Li, Y., Filipe, C. D., & Brennan, J. D. (2015). Printed paper sensors for serum lactate dehydrogenase using pullulan-based inks to immobilize reagents. Analytical Chemistry, 87(18), 9288–9293.

    Article  CAS  Google Scholar 

  20. Nuchtavorn, N., Leanpolchareanchai, J., Suntornsuk, L., & Macka, M. (2020). Paper-based sol-gel thin films immobilized cytochrome P450 for enzyme activity measurement. Analytica Chimica Acta, 1098, 86–93.

    Article  CAS  Google Scholar 

  21. Zhang, L. T., Cao, X. D., Wang, L., Zhao, X. Y., Zhang, S. P., & Wang, P. (2015). Printed microwells with highly stable thin-film enzyme coatings for point-of-care multiplex bioassay of blood samples. Analyst, 140(12), 4105–4413.

    Article  CAS  Google Scholar 

  22. Zhang, Y. F., Lyu, F. J., Ge, J., & Liu, Z. (2014). Ink-jet printing an optimal multi-enzyme system. Chemical Communications, 50(85), 12919–12922.

    Article  CAS  Google Scholar 

  23. Riccardi, C., Mistri, D., Hart, O., Anuganti, M., Lin, Y., Kasi, R., & Kumar, C. (2016). Covalent interlocking of glucose oxidase and peroxidase in the voids of paper: enzyme-polymer “spider webs”. Chemical Communication, 52(12), 2593–2596.

    Article  CAS  Google Scholar 

  24. Luo, X. G., Xia, J., Jiang, X. Y., Yang, M. R., & Liu, S. L. (2019). Cellulose-based strips designed based on a sensitive enzyme colorimetric assay for the low concentration of glucose detection. Analytical Chemistry, 91(24), 15461–15468.

    Article  CAS  Google Scholar 

  25. Park, C. Y., Kim, H. R., Kim, S. K., Jeong, I. K., Pyun, J. C., & Park, S. S. (2019). Three-dimensional paper-based microfluidic analytical devices integrated with a plasma separation membrane for the detection of biomarkers in whole blood. ACS Applied Materials & Interfaces, 11(40), 36428–36434.

    Article  CAS  Google Scholar 

  26. Liu, M. M., Lian, X., Liu, H., Guo, Z. Z., Huang, H. H., Lei, Y., Peng, H. P., Chen, W., Lin, X. H., Liu, A. L., & Xia, X. H. (2019). A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta, 200, 511–517.

    Article  CAS  Google Scholar 

  27. Luo, X. J., Zhao, J., Li, C. X., Bai, Y. P., Reetz, M. T., Yu, H. L., & Xu, J. H. (2016). Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnology & Bioengineering, 113(11), 2350–2357.

    Article  CAS  Google Scholar 

  28. Bai, Y. P., Luo, X. J., Zhao, Y. L., Li, C. X., Xu, D. S., & Xu, J. H. (2017). Efficient degradation of malathion in the presence of detergents using an engineered organophosphorus hydrolase highly expressed by Pichia pastoris without methanol induction. Journal of Agricultural and Food Chemistry, 65(41), 9094–9100.

    Article  CAS  Google Scholar 

  29. Cheng, H., Zhao, Y. L., Luo, X. J., Xu, D. S., Cao, X., Xu, J. H., Dai, Q., Zhang, X. Y., Ge, J., & Bai, Y. P. (2018). Cross-linked enzyme-polymer conjugates with excellent stability and detergent-enhanced activity for effcient organophosphate degradation. Bioresources and Bioprocessing, 5(1), 49.

    Article  Google Scholar 

  30. Suthiwangcharoen, N., & Nagarajan, R. (2014). Enhancing enzyme stability by construction of polymer–enzyme conjugate micelles for decontamination of organophosphate agents. Biomacromolecules, 15(4), 1142–1152.

    Article  CAS  Google Scholar 

  31. Kim, M., Gkikas, M., Huang, A., Kang, J. W., Suthiwangcharoen, N., Nagarajan, R., & Olsen, B. D. (2014). Enhanced activity and stability of organophosphorus hydrolase via interaction with an amphiphilic polymer. Chemical Communication, 50(40), 5345–5348.

    Article  CAS  Google Scholar 

  32. Wu, X. L., Ge, J., Zhu, J. Y., Zhang, Y. F., Yong, Y., & Liu, Z. (2015). A general method for synthesizing enzyme-polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant. Chemical Communication, 51(47), 9674–9677.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially sponsored by the National Key Research and Development Program of China (2016YFA0204300), the Natural Science Foundation of Shanghai (18ZR1409900), and the Key Project of the Shanghai Science and Technology Committee (18DZ1112703).

Author information

Authors and Affiliations

Authors

Contributions

X.-Y. Zhang and Y.-P. Bai designed and instructed the experiments; J.-H. Li, X.-L. Deng, and Y.-L. Zhao performed the research experiments; J.-H. Li, X.-L. Deng, Y.-L. Zhao, X.-Y. Zhang, and Y.-P. Bai analyzed the data; J.-H. Li, X.-Y. Zhang, and Y.-P. Bai wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiao-Yan Zhang or Yun-Peng Bai.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable.

Consent to Publish

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jian-Hui Li and Xue-Lei Deng contribute equally to this work.

Supplementary Information

ESM 1

(DOCX 337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH., Deng, XL., Zhao, YL. et al. Paper-Based Enzymatic Colorimetric Assay for Rapid Malathion Detection. Appl Biochem Biotechnol 193, 2534–2546 (2021). https://doi.org/10.1007/s12010-021-03531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03531-x

Keywords

Navigation