Skip to main content
Log in

Improve Production of Pullulanase of Bacillus subtilis in Batch and Fed-Batch Cultures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pullulanase is a debranching enzyme that cleaves explicitly α-1,6 glycosidic bonds, which is widely used in starch saccharification, production of glucose, maltose, and bioethanol. The thermal-resistant pullulanase is isolated from a variety of microorganisms; however, the lack of industrial production of pullulanase has hindered the transformation of the laboratory to industry. In this study, the expensive maltose syrup and soybean meal powder were replaced with cheap corn starch and corn steep liquor, exhibiting 440 U/mL of pullulanase in shake flasks by changing the C/N value and the total energy of the medium. Subsequently, the cultivation conditions were explored in a 50-L and 50-m3 bioreactor. In batch culture, the pullulanase activity reached 896 U/mL, while it increased to 1743 U/mL in fed-batch culture by controlling the dissolved oxygen, pH, reducing sugar content, and temperature. Remarkably, the cultivation volume was enlarged to 50 m3 based on the technical parameters of fed-batch culture. The industrial production of pullulanase was successful, and the activity achieved 1546 U/mL. When the product was stored at room temperature (25 °C) for 6 months, the pullulanase activity was over 90%. The half-lives at 60 and 80 °C were 119.45 h and 51.18 h, respectively, which satisfied the industrial application requirements of pullulanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367-+.

    Article  CAS  Google Scholar 

  2. Sih, A., Ferrari, M. C. O., & Harris, D. J. (2011). Evolution and behavioural responses to human-induced rapid environmental change. Evolutionary Applications, 4(2), 367–387.

    Article  Google Scholar 

  3. Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233–271.

    Article  CAS  Google Scholar 

  4. Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493–1513.

    Article  CAS  Google Scholar 

  5. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  Google Scholar 

  6. Mekonnen, M. M., Romanelli, T. L., Ray, C., Hoekstra, A. Y., Liska, A. J., & Neale, C. M. U. (2018). Water, energy, and carbon footprints of bioethanol from the US and Brazil. Environmental Science & Technology, 52(24), 14508–14518.

    Article  CAS  Google Scholar 

  7. Lee, S. H., Shetty, J. K., & Teunissen, P. J. M. (2014). Single pH process for starch liquefaction and saccharification for high-density glucose syrups, US.

  8. Li, C., Fang, D., Li, Z., Gu, Z., Yang, Q., Cheng, L., & Hong, Y. (2016). An improved two-step saccharification of high-concentration corn starch slurries by granular starch hydrolyzing enzyme. Industrial Crops and Products, 94, 259–265.

  9. Borchert, M., Gjermansen, M., Clark, S., Henrissat, B., Silow, M.B., Hallin, P.F. (2014). Pullulanase variants and uses thereof, Novozymes AS.

  10. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2010). Maltotriose syrup preparation from pullulan using pullulanase. Carbohydrate Polymers, 80(2), 401–407.

    Article  CAS  Google Scholar 

  11. Wang, X., Nie, Y., & Xu, Y. (2019). Industrially produced pullulanases with thermostability: discovery, engineering, and heterologous expression. Bioresource Technology, 278, 360–371.

    Article  CAS  Google Scholar 

  12. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89(1), 17–34.

    Article  CAS  Google Scholar 

  13. Xu, B. O., Yang, Y.-J., & Huang, Z.-X. (2006). Cloning and overexpression of gene encoding the pullulanase from Bacillus naganoensis in Pichia pastoris. Journal of Microbiology and Biotechnology, 16(8), 1184–1191.

    Google Scholar 

  14. Nie, Y., Yan, W., Xu, Chen, W. B., & Mu, X. (2013). High-level expression of Bacillus naganoensis pullulanase from recombinant Escherichia coli with auto-induction: effect of lac Operator. Plos One. 8(10), e78416.

  15. Yao, N., Wei, Y., Yan, X., Bo, C. W., Mu, X. Q., Wang, X., Rong, X., & Riggs, P. D. (2013). High-level expression of Bacillus naganoensis pullulanase from recombinant Escherichia coli with auto-induction: effect of lac Operator. Plos One, 8(10), e78416.

    Article  Google Scholar 

  16. Chen, A., Li, Y., Liu, X., Long, Q., Yang, Y., & Bai, Z. (2014). Soluble expression of pullulanase from Bacillus acidopullulyticus in Escherichia coli by tightly controlling basal expression. Journal of Industrial Microbiology & Biotechnology, 41(12), 1803–1810.

    Article  CAS  Google Scholar 

  17. Andersen, C., Jorgensen, C.T., Bisgard-Frantzen, H., Svendsen, A., Kjaerulff, S. (2003). Alpha-amylase variants. Novozymes AS.

  18. Shankar, R., Madihah, M. S., Shaza, E. M., Nur Aswati, K. O., Suraini, A. A., & Kamarulzaman, K. (2014). Application of different feeding strategies in fed batch culture for pullulanase production using sago starch. Carbohydrate Polymers, 102(Complete), 962–969.

    Google Scholar 

  19. Wang, Y., Chen, S., Zhao, X., Zhang, Y., & Yao, X. (2019). Enhancement of the production of Bacillus naganoensis pullulanase in recombinant Bacillus subtilis by integrative expression. Protein Expression & Purification. 159, 42–48.

  20. Zhang, K., Su, L., Duan, X., Liu, L., & Wu, J. (2017). High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microbial Cell Factories, 16(1), 32.

    Article  Google Scholar 

  21. Liu, X., Wang, H., Bin, W., & Pan, L. (2018). Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Microbial Cell Factories, 17(1), 163.

  22. Meng, F., Zhu, X., Nie, T., Lu, F., Bie, X., Lu, Y., Trouth, F., & Lu, Z. (2018). Enhanced expression of pullulanase in Bacillus subtilis by new strong promoters mined from transcriptome data, both alone and in combination. Front Microbiol, 9, 2635.

  23. Svendsen, A. (2008). Pullulanase variants and methods for preparing such variants with predetermined properties, Novozymes AS.

  24. Svendsen, A. (2011). Pullulanase variants and methods for preparing such variants with predetermined properties, Novozymes AS.

  25. Miller, B. S., & Shetty, J. K. (2008). Modified forms of pullulanase, US.

  26. Fan, Y., Lu, Y., Du, X., Du, H., & Li, F. (2019). Truncated pullulanases, methods of production, and methods of use thereof, US.

  27. Liaw, G. C., Pedersen, S., Hendriksen, H. V., Svendsen, A., Nielsen, B. R., & Nielsen, R. I. (2000). Method of producing saccharide preparations, Novo Nordisk A/S. Denmark: Bagsvaerd.

    Google Scholar 

  28. Sun, S., Zhang, L., Liu, F., Fan, X., & Sun, R. C. (2018). One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification. Biotechnology for Biofuels, 11, 137.

  29. Wang, X., Nie, Y., Mu, X., Xu, Y., & Xiao, R. (2016). Disorder prediction-based construct optimization improves activity and catalytic efficiency of Bacillus naganoensis pullulanase. Scientific Reports, 6(1), 24574.

    Article  CAS  Google Scholar 

  30. Pang, B., Zhou, L., Cui, W., Liu, Z., Zhou, S., Xu, J., & Zhou, Z. (2019). A hyperthermostable type II pullulanase from a deep-sea microorganism Pyrococcus yayanosii CH1. Journal of Agricultural and Food Chemistry, 67(34), 9611–9617.

    Article  CAS  Google Scholar 

  31. Bertoldo, C., Armbrecht, M., Becker, F., Schäfer, T., Antranikian, G., & Liebl, W. (2004). Cloning, sequencing, and characterization of a heat- and alkali-stable type i pullulanase from Anaerobranca gottschalkii. Appl Environ Microb, 70(6), 3407.

    Article  CAS  Google Scholar 

  32. Duan, X., Chen, J., & Wu, J. (2013). Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Applied and Environmental Microbiology, 79(13), 4072–4077.

    Article  CAS  Google Scholar 

  33. Yang, Y., Zhu, Y. Y., Obaroakpo, J. U., Zhang, S. W., Lu, J., Yang, L., Ni, D. W., Pang, X. Y., & Lv, J. P. (2020). Identification of a novel type I pullulanase from Fervidobacterium nodosum Rt17-B1, with high thermostability and suitable optimal pH. International Journal of Biological Macromolecules, 143, 424–433.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (31771948)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Statement

The research did not include any human subjects or animal experiments.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Zhu, X., Zhao, H. et al. Improve Production of Pullulanase of Bacillus subtilis in Batch and Fed-Batch Cultures. Appl Biochem Biotechnol 193, 296–306 (2021). https://doi.org/10.1007/s12010-020-03419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03419-2

Keywords

Navigation