Skip to main content
Log in

Chemo-Enzymatic Epoxidation of Lallemantia IbericaSeed Oil: Process Development and Economic-Ecological Evaluation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The chemo-enzymatic epoxidation of Lallemantia iberica seed oil (LISO), a novel plant oil characterized by its exceptional high content of alpha-linolenic acid (> 60%), was developed using an immobilized lipase from Pseudozyma antarctica and hydrogen peroxide as oxidant. A statistical approach was used to study the effect of enzyme amount, temperature, time, and solvent amount on the oxirane oxygen content obtained during epoxidation. An oxirane oxygen content of 8.6 ± 0.2% corresponding to a yield of 82% was obtained under optimized conditions that were identified to be at an enzyme load of 8.2 g/mol of double bonds, a solvent amount of 56.4 wt.%, a temperature of 33 °C, and an incubation time of 17 h. In addition, the experimental investigation was combined with a techno-economic and ecological assessment gaining detailed information regarding cost structure and environmental impact for the chemo-enzymatic epoxidation of the novel plant oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Metzger, J. O. (2009). Fats and oils as renewable feedstock for chemistry. European Journal of Lipid Science and Technology, 111, 865–876.

    Article  CAS  Google Scholar 

  2. Xia, Y., & Larock, R. C. (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemistry, 12, 1893–1909.

    Article  CAS  Google Scholar 

  3. Niederhauser, W. D. (1951). Chlorinated Rubber and epoxidized oils. ed Company, R. H.), pp. 3.

  4. Gan, L. H., Ooi, K. S., Goh, S. H., Gan, L. M., & Leong, Y. C. (1995). Epoxidized esters of palm olein as plasticizers for poly(vinyl chloride). European Polymer Journal, 31, 719–724.

    Article  CAS  Google Scholar 

  5. Al-Mulla, E., Yunus, W., Ibrahim, N., & Rahman, M. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45, 1942–1946.

    Article  CAS  Google Scholar 

  6. Campanella, A., Rustoy, E., Baldessari, A., & Baltanás, M. A. (2010). Lubricants from chemically modified vegetable oils. Bioresource Technology, 101, 245–254.

    Article  CAS  Google Scholar 

  7. Salimon, J., Salih, N., & Abdullah, B. M. (2012). Production of chemoenzymatic catalyzed monoepoxide biolubricant: optimization and physicochemical characteristics. Journal of Biomedicine and Biotechnology, 2012, 11.

  8. Crivello, J. V., & Narayan, R. (1992). Epoxidized triglycerides as renewable monomers in photoinitiated cationic polymerization. Chemistry of Materials, 4, 692–699.

    Article  CAS  Google Scholar 

  9. Overeem, A., Buisman, G. J. H., Derksen, J. T. P., Cuperus, F. P., Molhoek, L., Grisnich, W., & Goemans, C. (1999). Seed oils rich in linolenic acid as renewable feedstock for environment-friendly crosslinkers in powder coatings. Industrial Crops and Products, 10, 157–165.

    Article  CAS  Google Scholar 

  10. Dinda, S., Patwardhan, A. V., Goud, V. V., & Pradhan, N. C. (2008). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99, 3737–3744.

    Article  CAS  Google Scholar 

  11. Rüsch gen. Klaas, M., & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Industrial Crops and Products, 9, 125–132.

    Article  Google Scholar 

  12. Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S., & Yang, L. (2008). Studies on the kinetics of in situ epoxidation of vegetable oils. European Journal of Lipid Science and Technology, 110, 341–346.

    Article  CAS  Google Scholar 

  13. Prileschajew, N. (1909). Oxydation ungesättigter Verbindungen mittels organischer Superoxyde. Berichte der Deutschen Chemischen Gesellschaft, 42, 4811–4815.

    Article  CAS  Google Scholar 

  14. Bartlett, P. D. (1950). Recent work on the mechanisms of peroxide reactions. Record of Chemical Progress, 11, 47–50.

    CAS  Google Scholar 

  15. Swern, D. (1947). Electronic interpretation of the reaction of olefins with organic peracids. Journal of the American Chemical Society, 69, 1692–1698.

    Article  CAS  Google Scholar 

  16. Rios, L. A., Weckes, P., Schuster, H., & Hoelderich, W. F. (2005). Mesoporous and amorphous Ti–silicas on the epoxidation of vegetable oils. Journal of Catalysis, 232, 19–26.

    Article  CAS  Google Scholar 

  17. Rangarajan, B., Havey, A., Grulke, E., & Culnan, P. (1995). Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil. Journal of the American Oil Chemists’ Society, 72, 1161–1169.

    Article  CAS  Google Scholar 

  18. Björkling, F., Godtfredsen, S. E., & Kirk, O. (1990). Lipase-mediated formation of peroxycarboxylic acids used in catalytic epoxidation of alkenes. Journal of the Chemical Society, Chemical Communications, 1301–1303.

  19. Björkling, F., Frykman, H., Godtfredsen, S. E., & Kirk, O. (1992). Lipase catalyzed synthesis of peroxycarboxylic acids and lipase mediated oxidations. Tetrahedron, 48, 4587–4592.

    Article  Google Scholar 

  20. Rüsch gen. Klaas, M., & Warwel, S. (1996). Chemoenzymatic epoxidation of unsaturated fatty acid esters and plant oils. Journal of the American Oil Chemists’ Society, 73, 1453–1457.

    Article  Google Scholar 

  21. Sun, S., Ke, X., Cui, L., Yang, G., Bi, Y., Song, F., & Xu, X. (2011). Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Industrial Crops and Products, 33, 676–682.

    Article  CAS  Google Scholar 

  22. Sun, S., Yang, G., Bi, Y., & Liang, H. (2011). Enzymatic epoxidation of corn oil by perstearic acid. Journal of the American Oil Chemists’ Society, 1–5.

  23. Vlček, T., & Petrović, Z. (2006). Optimization of the chemoenzymatic epoxidation of soybean oil. Journal of the American Oil Chemists’ Society, 83, 247–252.

    Article  Google Scholar 

  24. Ulber, R., Sell, D., & Hirth, T. (2011). Renewable raw materials: new feedstocks for the chemical (industry. ed.). John Wiley & Sons.

  25. BMELV, BMBF, BMU and BMWi. (2012) Roadmap Bioraffinerien. ed.

  26. Chauvel, A., Fournier, G., & Raimbault, C. (2003). Manual of process economic evaluation. Editions Technip.

  27. Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003) Plant design and economics for chemical engineering.

  28. (DIN EN ISO 14040, 2006). Umweltmanagement-Ökobilanz-Grundsätze und Rahmenbedingungen (ISO 14040: 2006);. Deutsches Institut für Normung eV.

  29. (DIN EN ISO 14044, 2006) Umweltmanagement; Ökobilanz; Anforderungen und Anleitungen (ISO 14044: 2006). Beuth Verlag, Berlin.

  30. (VDI 6310, 2014) Classification and quality criteria of biorefineries.

  31. Engel, P., Fliedner, E., Fröhling, M., Haase, M., Laure, S., Meier, E., Schultmann, F., Schweinle, J., Susanto, A., & Zeigler, L. (2014), in Lignocellulose-Bioraffinerie - Aufschluss lignocellulosehaltiger Rohstoffe und vollständige stoffliche Nutzung der Komponenten (Phase 2).

  32. Michels, J. (2009) Pilotprojekt" Lignocellulose-Bioraffinerie. Gemeinsamer Schlussbericht zu den wissenschaftlich-technischen Ergebnissen aller Teilvorhaben.

  33. Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., & Henrich, E. (2010). Techno-economic analysis of fast pyrolysis as a process step within biomass-to-liquid fuel production. Waste Biomass Valoriz, 1, 415–430.

    Article  Google Scholar 

  34. Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., & Henrich, E. (2011). Techno-economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Processing Technology, 92, 2169–2184.

    Article  CAS  Google Scholar 

  35. Moncada, J., Tamayo, J., & Cardona, C. A. (2014). Evolution from biofuels to integrated biorefineries: techno-economic and environmental assessment of oil palm in Colombia. Journal of Cleaner Production, 81, 51–59.

    Article  CAS  Google Scholar 

  36. Sánchez, M., Marchetti, J. M., El Boulifi, N., Martínez, M., & Aracil, J. (2014) Jojoba oil biorefinery using a green catalyst. Part II: Feasibility study and economical assessment. Biofuels, Bioproducts and Biorefining, n/a-n/a.

  37. West, A. H., Posarac, D., & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS.Plant. Bioresource Technology, 99, 6587–6601.

    Article  CAS  Google Scholar 

  38. Siebertz, K., van Bebber, D., & Hochkirchen, T. (2010). Statistische Versuchsplanung - Design of Experiments (DoE). Berlin Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  39. Khataee, A. R., Dehghan, G., Ebadi, E., & Pourhassan, M. (2010). Central composite design optimization of biological dye removal in the presence of macroalgae Chara sp. Clean–Soil, Air, Water, 38, 750–757.

    Article  CAS  Google Scholar 

  40. Biertümpfel, A., Graf, T., Reinhold, G., & Schmatz, R. (2005) Leitlinie zur effizienten und umweltverträglichen Erzeugung von Iberischem Drachenkopf. Thüringer Landesanstalt für Landwirtschaft.

  41. Richter, R., Graf, T., & Reinhold, G. (2008) Betriebswirtschaftliche Betrachtung der dezentralen Ölsaatenverarbeitung. Thüringer Landesanstalt für Landwirtschaft.

  42. Michels, J., Bäcker, W., Becker, K., Susanto, A., Unkelbach, G., Leschinsky, M., Fliedner, E., Engel, P., Rainer, S., Pohsner, U., Böringer, S., Zibek, S., Naundorf, M., Küstermann, E., Föhling, M., Haase, M., Laure, S., Ziegler, L., Schweinle, J., Meier, E., Tippkötter, N., Duwe, A., Sieker, T., Zorn, H., Imami, A., Riemer, S., Saake, B., Lehnen, R., Meier, D., Kühnel, I., Podschun, J., Strüven, J.-O., Stücker, A., & Amann, M. (2014) Lignocellulose-Bioraffinerie - Aufschluss lignocellulosehaltiger Rohstoffe und vollständige stoffliche Nutzung der Komponenten (Phase 2).

  43. Warwel, S., & Rüsch gen. Klaas, M. (1995). Chemo-enzymatic epoxidation of unsaturated carboxylic acids. Journal of Molecular Catalysis B: Enzymatic, 1, 29–35.

    Article  CAS  Google Scholar 

  44. Suh, S., Lenzen, M., Treloar, G. J., Hondo, H., Horvath, A., Huppes, G., Jolliet, O., Klann, U., Krewitt, W., Moriguchi, Y., Munksgaard, J., & Norris, G. (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environmental Science & Technology, 38, 657–664.

    Article  CAS  Google Scholar 

  45. Giwa, A. (2017) Comparative cradle-to-grave life cycle assessment of biogas production from marine algae and cattle manure biorefineries. Bioresource Technology.

  46. VCI. (2017) Chemiewirtschaft in Zahlen. 59.

  47. EcoinventCentre. (2010). Ecoinvent data v2.2. Final report ecoinvent v2.2 No. 3. Dübendorf: Swiss Centre for Life Cycle Inventories.

    Google Scholar 

  48. Guinee, J. B. (2002) Handbook on life cycle assessment: operational guide to the ISO standards.

  49. Goud, V. V., Patwardhan, A. V., & Pradhan, N. C. (2006). Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technology, 97, 1365–1371.

    Article  CAS  Google Scholar 

  50. Törnvall, U., Orellana-Coca, C., Hatti-Kaul, R., & Adlercreutz, D. (2007). Stability of immobilized Candida antarctica lipase B during chemo-enzymatic epoxidation of fatty acids. Enzyme and Microbial Technology, 40, 447–451.

    Article  Google Scholar 

Download references

Acknowledgements

We like to thank Dr. J. Gottfriedsen (DRACOSA AG) for the supply of Lallemantia iberica seed oil and Novozymes A/S Denmark for the gift of Novozym® 435. We gratefully acknowledge the support of this work by BMEL represented by FNR within the joint research project »Integrated BioProduction« (FKZ of KIT IIP 22001909 and Fraunhofer IGB 22027407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zibek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haitz, F., Radloff, S., Rupp, S. et al. Chemo-Enzymatic Epoxidation of Lallemantia IbericaSeed Oil: Process Development and Economic-Ecological Evaluation. Appl Biochem Biotechnol 185, 13–33 (2018). https://doi.org/10.1007/s12010-017-2630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2630-1

Keywords

Navigation