Skip to main content
Log in

Antioxidant and Protective Effects of Schinus terebinthifolius Raddi Against Doxorubicin-Induced Toxicity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Doxorubicin is an anticancer drug whose toxic effects on non-cancer cells are associated with increased oxidative stress. This study investigated the chemical composition, antioxidant activity of the methanolic extract of Schinus terebinthifolius Raddi leaves (MESL) as well as effects against doxorubicin-induced toxicity in human erythrocytes, K562 human erythroleukemia cells, and mouse hearts. The chemical composition indicated the presence of phenolic compounds, flavonoids, tannins, and ascorbic acid. MESL showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent, and was able to increase the enzymatic activity of superoxide dismutase and glutathione peroxidase in human erythrocytes, without influencing the activity of enzyme catalase. The increase of oxidative hemolysis and malondialdehyde levels in erythrocytes incubated with doxorubicin was reduced by treatment with MESL. The cytotoxic activity of doxorubicin in erythroleukemia cells treated with MESL was unmodified. Additionally, the extract protected mice against the doxorubicin-induced cardiotoxicity. In conclusion, the MESL exhibits antioxidant activity, reducing doxorubicin-induced oxidative stress without changing the anticancer action of the drug, and protects against doxorubicin-induced cardiotoxicity. Hence, these findings suggest that these effects are via anti-oxidative by inhibiting free radicals, decreased oxidative stress, and increased antioxidant enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229. https://doi.org/10.1124/pr.56.2.6.

    Article  CAS  Google Scholar 

  2. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., & Yeh, E. T. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642. https://doi.org/10.1038/nm.2919.

    Article  Google Scholar 

  3. Li, T., & Singal, P. K. (2000). Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation, 102, 2105–2110. https://doi.org/10.1161/01.CIR.102.17.2105.

    Article  CAS  Google Scholar 

  4. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225. https://doi.org/10.1016/j.yjmcc.2012.03.006.

    Article  CAS  Google Scholar 

  5. Siveski-Iliskovic, N., Hill, M., Chow, D. A., & Singal, P. K. (1995). Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation, 91, 10–15. https://doi.org/10.1161/01.CIR.91.1.10.

    Article  CAS  Google Scholar 

  6. Imbaby, S., Ewais, M., Essawy, S., & Farag, N. (2014). Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Human & Experimental Toxicology, 33, 800–813. https://doi.org/10.1177/0960327114527628.

    Article  CAS  Google Scholar 

  7. Ghosh, J., Das, J., Manna, P., & Sil, P. C. (2011). The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials, 32, 4857–4866. https://doi.org/10.1016/j.biomaterials.2011.03.048.

    Article  CAS  Google Scholar 

  8. Indu, R., Azhar, T. S., Nair, A., & Nair, C. K. (2014). Amelioration of doxorubicin induced cardio-and hepato-toxicity by carotenoids. Journal of Cancer Research and Therapeutics, 10, 62–67. https://doi.org/10.4103/0973-1482.131370.

    Article  CAS  Google Scholar 

  9. Xiao, J., Sun, G. B., Sun, B., Wu, Y., He, L., Wang, X., Chen, R. C., Cao, L., Ren, X. Y., & Sun, X. B. (2012). Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology, 292, 53–62. https://doi.org/10.1016/j.tox.2011.11.018.

    Article  CAS  Google Scholar 

  10. Mantawy, E. M., El-Bakly, W. M., Esmat, A., Badr, A. M., & El-Demerdash, E. (2014). Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. European Journal of Pharmacology, 728, 107–118. https://doi.org/10.1016/j.ejphar.2014.01.065.

    Article  CAS  Google Scholar 

  11. Chen, R. C., Xu, X. D., Zhi Liu, X., Sun, G. B., Zhu, Y. D., Dong, X., Wang, J., Zhang, H. J., Zhang, Q., & Sun, X. B. (2015). Total flavonoids from Clinopodium chinense (Benth.) O. Ktze protect against doxorubicin-induced cardiotoxicity in vitro and in vivo. Evidence-based Complementary and Alternative Medicine, 1, 1–17. https://doi.org/10.1155/2015/472565.

    Google Scholar 

  12. Roopan, S. M. (2016). An overview of phytoconstituents, biotechnological applications, and nutritive aspects of coconut (Cocos nucifera). Applied Biochemistry and Biotechnology, 179, 1309–1324. https://doi.org/10.1007/s12010-016-2067-y.

    Article  CAS  Google Scholar 

  13. Bauer, Lopes Galeno, D. M., Carvalho, R. P., Boleti, A. P., Lima, A. S., Oliveira de Almeida, P. D., Pacheco, C. C., Pereira de Souza, T., & Lima, E. S. (2014). Extract from Eugenia punicifolia is an antioxidant and inhibits enzymes related to metabolic syndrome. Applied Biochemistry and Biotechnology, 172, 311–324. https://doi.org/10.1007/s12010-013-0520-8.

    Article  Google Scholar 

  14. Morton, J. F. (1978). Brazilian pepper: its impact on people, animals and the environment. Economic Botany, 32, 353–359.

    Article  CAS  Google Scholar 

  15. Brandão, M. G. L., Consenza, G. P., Moreira, R. A., & Monte-Mor, R. L. M. (2006). Medicinal plants and other botanical products from the Brazilian official pharmacopeia. Revista Brasileira de Farmacognosia, 16, 408–420. https://doi.org/10.1590/S0102-695X2006000300020.

    Article  Google Scholar 

  16. Jain, M. K., Yu, B. Z., Rogers, J. M., Smith, A. E., Boger, E. T. A., Ostrander, R. L., & Rheingold, A. L. (1995). Specific competitive inhibitor of secreted phospholipase A2 from berries of Schinus terebinthifolius. Phytochemistry, 39, 537–547. https://doi.org/10.1016/0031-9422(94)00960-2.

    Article  CAS  Google Scholar 

  17. Alves, L. A., Freires, I. A., Pereira, T. M., Souza, A., Lima, E. O., & Castro, R. D. (2013). Effect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology. Acta Odontologica Scandinavica, 71, 965–971. https://doi.org/10.3109/00016357.2012.741694.

    Article  Google Scholar 

  18. Bendaoud, H., Romdhane, M., Souchard, J. P., Cazaux, S., & Bouajila, J. (2010). Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. Journal of Food Science, 75, C466–C472. https://doi.org/10.1111/j.1750-3841.2010.01711.x.

    Article  CAS  Google Scholar 

  19. Matsuo, A. L., Figueiredo, C. R., Arruda, D. C., Pereira, F. V., Scutti, J. A. B., Massaoka, M. H., Travassos, L. R., Sartorelli, P., & Lago, J. H. G. (2011). α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochemical and Biophysical Research Communications, 411, 449–454. https://doi.org/10.1016/j.bbrc.2011.06.176.

    Article  CAS  Google Scholar 

  20. Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91, 571–577. https://doi.org/10.1016/j.foodchem.2004.10.006.

    Article  CAS  Google Scholar 

  21. Liberio, S. A., Pereira, A. L. A., Dutra, R. P., Reis, A. S., Araújo, M. J. A. M., Mattar, N. S., Silva, L. A., Ribeiro, M. N., Nascimento, F. R., Guerra, R. N., & Monteiro-Neto, V. (2011). Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculate Smith. BMC Complementary and Alternative Medicine, 11, 1–10. https://doi.org/10.1186/1472-6882-11-108.

    Article  Google Scholar 

  22. Benassi, M. T., & Antunes, A. J. (1988). A comparison of meta-phosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, 31, 507–513.

    CAS  Google Scholar 

  23. Tirloni, C. A. S., Macorini, L. F. B., Santos, U. P., Rocha, P. S., Barros, S. V., Mello, A. M. M. F., Vieira, M. C., de Picoli, S., & Santos, E. L. (2015). Evaluation of the antioxidant activity, antimicrobial effect and acute toxicity from leaves of Allophylus edulis (A. St.-Hil., A. Juss. Cambess &.) Hieron. ex Niederl. African Journal of Pharmacy and Pharmacology, 9, 353–362. https://doi.org/10.5897/AJPP2015.4270.

    Article  CAS  Google Scholar 

  24. Campos, J. F., Santos, U. P., Macorini, L. F. B., Melo, A. M. M. F., Balestieri, J. B. P., Gamero, E. J. P., Cardoso, C. A. L., Souza, K. P., & Santos, E. L. (2014). Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae). Food and Chemical Toxicology, 65, 374–380. https://doi.org/10.1016/j.fct.2014.01.008.

    Article  CAS  Google Scholar 

  25. Xu, P., Costa-Goncalves, A. C., Todiras, M., Rabelo, L. A., Sampaio, W. O., Moura, M. M., Santos, S. S., Luft, F. C., Bader, M., Gross, V., Alenina, N., & Santos, R. A. (2008). Endothelial dysfunction and elevated blood pressure in mas gene-deleted mice. Hypertension, 51, 574–580. https://doi.org/10.1161/HYPERTENSIONAHA.107.102764.

    Article  CAS  Google Scholar 

  26. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70, 158–169.

    CAS  Google Scholar 

  27. Momin, F. N., Kalai, B. R., Shikalgar, T. S., & Naikwade, N. S. (2012). Cardioprotective effect of methanolic extract of Ixora coccinea Linn. leaves on doxorubicin-induced cardiac toxicity in rats. Indian J. Pharmacol., 44, 178–183. https://doi.org/10.4103/0253-7613.93844.

    Article  Google Scholar 

  28. Volkova, M., & Russell, R. (2011). Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Current Cardiology Reviews, 7, 214–220. https://doi.org/10.2174/157340311799960645.

    Article  CAS  Google Scholar 

  29. Thandavarayan, R. A., Giridharan, V. V., Arumugam, S., Suzuki, K., Ko, K. M., Krishnamurthy, P., Watanabe, K., & Konishi, T. (2015). Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PloS One, 10, 1–18. https://doi.org/10.1371/journal.pone.0119214.

    Article  Google Scholar 

  30. Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., & Wang, G. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171, 4440–4454. https://doi.org/10.1111/bph.12795.

    Article  CAS  Google Scholar 

  31. Yen, G. C., Duh, P. D., & Tsai, H. L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chemistry, 79, 307–313. https://doi.org/10.1016/S0308-8146(02)00145-0.

    Article  CAS  Google Scholar 

  32. Sundaram, S., Anjum, S., Dwivedi, P., & Rai, G. K. (2011). Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening. Applied Biochemistry and Biotechnology, 164, 1192–1206. https://doi.org/10.1007/s12010-011-9205-3.

    Article  CAS  Google Scholar 

  33. Okuda, T., & Ito, H. (2011). Tannins of constant structure in medicinal and food plants—hydrolyzable tannins and polyphenols related to tannins. Molecules, 16, 2191–2217. https://doi.org/10.3390/molecules16032191.

    Article  CAS  Google Scholar 

  34. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal., 29, 1–16. https://doi.org/10.1155/2013/162750.

    Google Scholar 

  35. Nickel, A., Kohlhaas, M., & Maack, C. (2014). Mitochondrial reactive oxygen species production and elimination. Journal of Molecular and Cellular Cardiology, 73, 26–33. https://doi.org/10.1016/j.yjmcc.2014.03.011.

    Article  CAS  Google Scholar 

  36. Chen, X., Touyz, R. M., Park, J. B., & Schiffrin, E. L. (2001). Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension, 38, 606–611. https://doi.org/10.1161/hy09t1.094005.

    Article  CAS  Google Scholar 

  37. Del Rio, D., Stewart, A. J., & Nicoletta Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism, and Cardiovascular Diseases, 15, 316–328. https://doi.org/10.1016/j.numecd.2005.05.003.

    Article  Google Scholar 

  38. Bonomini, F., Rodella, L. F., & Rezzani, R. (2015). Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis., 6, 109–120. 10.14336/AD.2014.0305.

    Article  Google Scholar 

  39. Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters, 82, 969–974. https://doi.org/10.1016/0378-4274(95)03532-X.

    Article  Google Scholar 

  40. Amorati, R., & Valgimigli, L. (2012). Modulation of the antioxidant activity of phenols by non-covalent interactions. Organic & Biomolecular Chemistry, 10, 4147–4158. https://doi.org/10.1039/c2ob25174d.

    Article  CAS  Google Scholar 

  41. Lykkesfeldt, J. (2007). Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clinica Chimica Acta, 380, 50–58. https://doi.org/10.1016/j.cca.2007.01.028.

    Article  CAS  Google Scholar 

  42. Waseem, M., & Parvez, S. (2013). Mitochondrial dysfunction mediated cisplatin induced toxicity: modulatory role of curcumin. Food and Chemical Toxicology, 53, 334–342. https://doi.org/10.1016/j.fct.2012.11.055.

    Article  CAS  Google Scholar 

  43. Bagchi, D., Swaroop, A., Preuss, H. G., & Bagchi, M. (2014). Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutation Research, 768, 69–73. https://doi.org/10.1016/j.mrfmmm.2014.04.004.

    Article  CAS  Google Scholar 

  44. Santos, U. P., Campos, J. F., Torquato, H. F., Paredes-Gamero, E. J., Carollo, C. A., Estevinho, L. M., de Picoli Souza, K., & Dos Santos, E. L. (2016). Antioxidant, antimicrobial and cytotoxic properties as well as the phenolic content of the extract from Hancornia speciosa Gomes. PloS One, 11, 1–19. https://doi.org/10.1371/journal.pone.0167531.

    Google Scholar 

  45. Campos, J. F., de Castro, D. T., Damião, M. J., Torquato, H. F. V., Paredes-Gamero, E. J., Carollo, C. A., Estevinho, L. M., de Picoli Souza, K., & Dos Santos, E. L. (2016). The chemical profile of Senna velutina leaves and their antioxidant and cytotoxic effects. Oxidative Medicine and Cellular Longevity, 2016, 1–12. https://doi.org/10.1155/2016/8405957.

    Article  Google Scholar 

  46. Elberry, A. A., Abdel-Naim, A. B., Abdel-Sattar, E. A., Nagy, A. A., Mosli, H. A., Mohamadin, A. M., & Ashour, O. M. (2010). Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food and Chemical Toxicology, 48, 1178–1184. https://doi.org/10.1016/j.fct.2010.02.008.

    Article  CAS  Google Scholar 

  47. Ahmed, F., & Urooj, A. (2012). Cardioprotective activity of standardized extract of Ficus racemosa stem bark against doxorubicin-induced toxicity. Pharmaceutical Biology, 50, 468–473. https://doi.org/10.3109/13880209.2011.613848.

    Article  Google Scholar 

  48. Kumral, A., Giriş, M., Soluk-Tekkeşin, M., Olgaç, V., Doğru-Abbasoğlu, S., Türkoğlu, Ü., & Uysal, M. (2015). Effect of olive leaf extract treatment on doxorubicin-induced cardiac, hepatic and renal toxicity in rats. Pathophysiology, 22, 117–123. https://doi.org/10.1016/j.pathophys.2015.04.002.

    Article  CAS  Google Scholar 

  49. Araújo, M. C. S., Farias, I. L., Gutierres, J., Dalmora, S. L., Flores, N., Farias, J., Cruz, I., Chiesa, J., Morsch, V. M., & Schetinger, M. R. C. (2012). Uncaria tomentosa-adjuvant treatment for breast cancer: clinical trial. Evidence-based Complementary and Alternative Medicine, 1, 1–8. https://doi.org/10.1155/2012/676984.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Foundation to Support to Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

P.S.R., J.F.C., K.P.S., and E.L.S. conceived and designed the experiments; P.S.R., J.F.C., V.N.S., A.P.A.B., L.A.R., and K.P.S. performed the experiments; P.S.R., J.F.C., V.N.S., M.C.A., A.P.A.B., L.A.R., K.P.S., and E.L.S. analyzed the data; V.N.S., M.C.A., L.A.R., K.P.S., and E.L.S. contributed reagents/materials/analysis tools; P.S.R., J.F.C., L.A.R., K.P.S., and E.L.S. wrote the paper. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Kely de Picoli Souza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, P.d.S.d., Campos, J.F., Nunes-Souza, V. et al. Antioxidant and Protective Effects of Schinus terebinthifolius Raddi Against Doxorubicin-Induced Toxicity. Appl Biochem Biotechnol 184, 869–884 (2018). https://doi.org/10.1007/s12010-017-2589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2589-y

Keywords

Navigation