Skip to main content
Log in

Extract from Eugenia punicifolia is an Antioxidant and Inhibits Enzymes Related to Metabolic Syndrome

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to investigate in vitro biological activities of extract of Eugenia punicifolia leaves (EEP), emphasizing the inhibitory activity of enzymes related to metabolic syndrome and its antioxidant effects. The antioxidant activity was analyzed by free radicals scavengers in vitro assays: DPPH·, ABTS·+, O2 ·−, and NO· and a cell-based assay. EEP were tested in inhibitory colorimetric assays using α-amylase, α-glucosidase, xanthine oxidase, and pancreatic lipase enzymes. The EEP exhibited activity in ABTS·+, DPPH·, and O2 ·− scavenger (IC50 = 10.5 ± 1.2, 28.84 ± 0.54, and 38.12 ± 2.6 μg/mL), respectively. EEP did not show cytotoxic effects, and it showed antioxidant activity in cells in a concentration-dependent manner. EEP exhibited inhibition of α-amylase, α-glucosidase, and xanthine oxidase activities in vitro assays (IC50 = 122.8 ± 6.3; 2.9 ± 0.1; 23.5 ± 2.6), respectively; however, EEP did not inhibit the lipase activity. The findings supported that extract of E. punicifolia leaves is a natural antioxidant and inhibitor of enzymes, such as α-amylase, α-glucosidase, and xanthine oxidase, which can result in a reduction in the carbohydrate absorption rate and decrease of risks factors of cardiovascular disease, thereby providing a novel dietary opportunity for the prevention of metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EEP:

Standardized extract of Eugenia punicifolia leaves

MS:

Metabolic syndrome

DPPH·:

2,2-diphenyl-1-picrylhydrazyl

ABTS+ :

2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid

O2 ·− :

Anion superoxide radical

NO·:

Nitric oxide

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

NBT:

Nitroblue tetrazolium

NADH:

Nicotinamide-adenine-dinucleotide

PMS:

Phenazine methasulfate

DCFH-DA:

2′,7′-dichlorofluorescin diacetate

TP:

Total polyphenol

NTF:

Non-tannin fraction

ES:

Extractive solution

TTC:

Total tannin content

DF:

Dilution factor

DMEM:

Dulbecco's Modified Eagle Medium

FBS:

Fetal bovine serum

4-NPGP:

4-nitrophenyl α-d-glucopyranoside

XO:

Xanthine oxidase

ROS:

Reactive oxygen species

References

  1. Ervin B., Ph.D. R.D. (2009) National Health Statistic Report. 5 (13), 1–7.

  2. Holvoet, P. (2008). Verhandelingen-Koninklijke Academie voor Geneeskunde van Belgie., 70(3), 193–219.

    CAS  Google Scholar 

  3. Halliwell, B. (1997). Nutrition Reviews, 55(1 Pt 2), S44–S49.

    CAS  Google Scholar 

  4. Hansel, B., Giral, P., Nobecourt, E., Chantepie, S., Brucker, E. J., & Kontush, A. (2004). The journal of Clinical Endocrinology & Metabolism, 89(10), 4963–4971.

    Article  CAS  Google Scholar 

  5. Cefalu, W. T., Ye, J., Zuberi, A., Ribnicky, D. M., Raskin, I., Liu, Z., et al. (2008). American Journal Clinical Nutrition, 87(2), 481S–487S.

    CAS  Google Scholar 

  6. Brunetti, I. L., Vendramini, R. C., Januario, A. H., Franca, S. C., & Pepato, M. T. (2006). Pharmaceutical Journal, 44(1), 35–43.

    Google Scholar 

  7. Voigt, R. (2005). Pharmazeutische Technologie 10. überarb. Aufl., Ullstein Mosby, Berlin

  8. The United States Pharmacopeia. (2000). 25th ed., Mack Printing Company, Easton, PA.

  9. Hartke, K., Mutschler, E. (1987). Deutsches Arzneibuch-9-Kommentar. Ausgabe 1986. Suttgart, Wissenschaftliche.

  10. Mahmoudi, M., Ebrahimzadeh, M., Ansaroudi, F., Nabavi, S. F., & Nabavi, S. M. (2009). Journal of Biotechnology, 8(24), 7170–7175.

    Google Scholar 

  11. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Free Radical Biology & Medicine, 26(9/10), 1231–1237.

    Article  CAS  Google Scholar 

  12. Öztürk, M., Aydogmus-Öztür, F., Duru, M. E., & Topçu, G. (2007). Food Chemistry, 103(2), 623–630.

    Article  Google Scholar 

  13. Govindarajan, R., Rastogi, S., Vijayakumar, M., Shirwaikar, A., Ajay, K. S. R., Mehrotra, S., et al. (2003). Biological Pharmaceutical Bulletin, 26(10), 1424–1427.

    Article  CAS  Google Scholar 

  14. Nakayama, G. R., Caton, M. C., Nova, M. P., & Parandoosh, Z. (1997). Journal of Immunological Methods, 204(2), 205–208.

    Article  CAS  Google Scholar 

  15. Wolfe, L. L., & Liu, R. H. (2007). Journal of Agricultural Food Chemistry, 55(22), 8896–8907.

    Article  CAS  Google Scholar 

  16. Andrade-Cetto, A., Becerra-Jiménez, J., & Cárdenas-Vázquez, R. (2008). Journal of Ethnopharmacology, 116(1), 27–32.

    Article  Google Scholar 

  17. Subramaniam, R., Asmawi, M. Z., & Sadikun, A. (2008). Acta Biochimica Polonica, 55(2), 391–398.

    Google Scholar 

  18. Bondet, V., Brand-Williams, W., & Berset, C. (1997). Food Science and Technology, 30, 609–615.

    CAS  Google Scholar 

  19. Slanc, P., Doljak, B., Kreft, S., Lunder, M., Janes, D., & Strukelj, B. (2009). Phytotherapy Research, 23(6), 874–877.

    Article  CAS  Google Scholar 

  20. Espín, J. C., García-Conesa, M. T., & Tomás-Barberán, F. A. (2007). Phytochemistry, 68, 2986–3008.

    Article  Google Scholar 

  21. Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Life Sciences, 74(17), 2157–2184.

    Article  CAS  Google Scholar 

  22. Apel, K., & Hirt, H. (2004). Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  23. Floegel, A., Kim, D., Chung, S., Koo, S., & Chun, O. K. (2011). Journal of food Composition and Analysis, 24, 1043–1048.

    Article  CAS  Google Scholar 

  24. Mahmoudi, M., Ebrahimzadeh, M., Ansaroudi, F., Nabavi, S. F., & Nabavi, S. M. (2009). Journal of Biotechnology, 8(24), 7170–7175.

    Google Scholar 

  25. Ilhami, G., Bursal, E., Sehitoglu, M. H., Bilsel, M., & Goren, A. C. (2010). Food and Chemical Toxicology, 48(8–9), 2227–2238.

    Google Scholar 

  26. Formica, J. V., & Regelson, W. (1995). Food and Chemical Toxicology, 33(12), 1061–1080.

    Article  CAS  Google Scholar 

  27. Rice-evans, C. A., & Miller, N. J. (1996). Biochemical Society Transactions, 24(3), 790–795.

    CAS  Google Scholar 

  28. Hung, H. C., Joshipura, K. J., Jiang, R., Hu, F. B., Hunter, D., Smith-Warner, S. A., et al. (2004). Journal of the National Cancer Institute, 96(21), 1577–1584.

    Article  Google Scholar 

  29. Shim, Y. J., Doo, H. K., Ahn, S. Y., Kim, Y. S., Seong, J. K., Park, I. S., et al. (2003). Journal of Ethnopharmacology, 85, 283–287.

    Article  Google Scholar 

  30. Van de Laar, F., Lucassen, P. L., Akkermans, R. P., Van de Lisdonk, E. H., Rutten, G. E., & Van Weel, C. (2005). Diabetes Care, 28, 154–163.

    Article  Google Scholar 

  31. Kim, S. H., Sung-Hoon, J. O., Young-In, K., & Jae-Kwan, H. (2011). International Journal of Molecular Science, 12(6), 3757–3769.

    Article  CAS  Google Scholar 

  32. Ahmed, F., Chandra, J. N. N. S., & Timmaiah, N. V. (2009). Pharmacognos, 1(4), 317–321.

    CAS  Google Scholar 

  33. Adyanthaya, I., Kwon, Y. I., Apostolidis, E., & Shetty, K. (2010). Journal of food Biochemistry, 34(1), 31–49.

    Article  CAS  Google Scholar 

  34. Lin, C. C., Huang, P. C., & Lin, J. M. (2000). The American Journal Chinese Medicine, 28(1), 87–96.

    Article  CAS  Google Scholar 

  35. Heber, D., Seeram, N., Wyatt, H., Henning, S. M., Zhang, Y., Ogden, L. G., et al. (2007). Journal of Agricultural and Food Chemistry, 55(24), 0050–10054.

    Article  Google Scholar 

  36. Zajácz, A., Gyémánt, G., Vittori, N., & Kandra, L. (2007). Carbohydrate Research, 342, 717–723.

    Article  Google Scholar 

  37. Consolini, A. E., & Sarubio, M. G. (2002). Journal of Ethnopharmacology, 81(1), 57–63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) for the financial support of this research. ESL is member of the INCT of Processes Redox in Biomedicina-Redoxoma (MCT/CNPq). APAB received a grant from DCR/CNPq/FAPEAM. Thanks to Célio Maia Chaves from EMBRAPA for the Eugenia punicifolia plant material donation and to Jim Hesson of AcademicEnglishSolutions.com for proofreading the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson Silva Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galeno, D.M.L., Carvalho, R.P., de Araújo Boleti, A.P. et al. Extract from Eugenia punicifolia is an Antioxidant and Inhibits Enzymes Related to Metabolic Syndrome. Appl Biochem Biotechnol 172, 311–324 (2014). https://doi.org/10.1007/s12010-013-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0520-8

Keywords

Navigation