Skip to main content
Log in

A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi, W., Sakihama, Y., Shimizu, S., Sunami, T., Fukazawa, T., Suzuki, M., et al. (2004). Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp K17. Journal of Molecular Biology, 343, 785–795.

    Article  CAS  Google Scholar 

  2. Alzari, P. M., Souchon, H., & Dominguez, R. (1996). The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure, 4, 265–275.

    Article  CAS  Google Scholar 

  3. Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W. A., & Brzezinski, R. (1992). Purification and characterization of a chitosanase from Streptomyces N174. Applied Microbiology and Biotechnology, 38, 188–193.

    Article  CAS  Google Scholar 

  4. Fukamizo, T., Honda, Y., Goto, S., Boucher, I., & Brzezinski, R. (1995). Reaction-mechanism of chitosanase from Streptomyces sp N174. The Biochemical Journal, 311, 377–383.

    Article  CAS  Google Scholar 

  5. Gupta, V., Prasanna, R., Natarajan, C., Srivastava, A. K., & Sharma, J. (2010). Identification, characterization, and regulation of a novel antifungal chitosanase Gene (cho) in Anabaena spp. Applied and Environmental Microbiology, 76, 2769–2777.

    Article  CAS  Google Scholar 

  6. Gupta, V., Prasanna, R., Srivastava, A. K., & Sharma, J. (2012). Purification and characterization of a novel antifungal endo-type chitosanase from Anabaena fertilissima. Annales de Microbiologie, 62, 1089–1098.

    Article  CAS  Google Scholar 

  7. Honda, Y., Fukamizo, T., Boucher, I., & Brzezinski, R. (1997). Substrate binding to the inactive mutants of Streptomyces sp. N174 chitosanase: indirect evaluation from the thermal unfolding experiments. FEBS Letters, 411, 346–350.

    Article  CAS  Google Scholar 

  8. Honda, Y., Kirihata, M., Fukamizo, T., Kaneko, S., Tokuyasu, K., & Brzezinski, R. (1999). Chitosanase-catalyzed hydrolysis of 4-methylumbelliferyl beta-chitotrioside. The Journal of Biochemistry-Tokyo, 126, 470–474.

    Article  CAS  Google Scholar 

  9. Ike, M., Ko, Y., Yokoyama, K., Sumitani, J. I., Kawaguchi, T., Ogasawara, W., et al. (2007). Cellobiohydrolase I (Ce17a) from Trichoderma reesei has chitosanase activity. Journal of Molecular Catalysis B: Enzymatic, 47, 159–163.

    Article  CAS  Google Scholar 

  10. Jung, W. J., & Park, R. D. (2014). Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs, 12, 5328–5356.

    Article  CAS  Google Scholar 

  11. Karshikoff, A., Nilsson, L., & Ladenstein, R. (2015). Rigidity versus flexibility: the dilemma of understanding protein thermal stability. The FEBS Journal, 282, 3899–3917.

    Article  CAS  Google Scholar 

  12. Kim, P. I., Kang, T. H., Chung, K. J., Kim, I. S., & Chung, K. C. (2004). Purification of a constitutive chitosanase produced by Bacillus sp. MET 1299 with cloning and expression of the gene. FEMS Microbiology Letters, 240, 31–39.

    Article  CAS  Google Scholar 

  13. Lacombe-Harvey, M. E., Fortin, M., Ohnuma, T., Fukamizo, T., Letzel, T. and Brzezinski, R. (2013) A highly conserved arginine residue of the chitosanase from Streptomyces sp N174 is involved both in catalysis and substrate binding. BMC Biochemistry, 14.

  14. Lacombe-Harvey, M. E., Fukamizo, T., Gagnon, J., Ghinet, M. G., Dennhart, N., Letzel, T., et al. (2009). Accessory active site residues of Streptomyces sp N174 chitosanase. The FEBS Journal, 276, 857–869.

    Article  CAS  Google Scholar 

  15. Lebbink, J. H., Consalvi, V., Chiaraluce, R., Berndt, K. D., & Ladenstein, R. (2002). Structural and thermodynamic studies on a salt-bridge triad in the NADP-binding domain of glutamate dehydrogenase from Thermotoga maritima: cooperativity and electrostatic contribution to stability. Biochemistry, 41, 15524–15535.

    Article  CAS  Google Scholar 

  16. Lee, H. S., Jang, J. S., Choi, S. K., Lee, D. W., Kim, E. J., Jung, H. C., et al. (2007). Identification and expression of GH-8 family chitosanases from several Bacillus thuringiensis subspecies. FEMS Microbiology Letters, 277, 133–141.

    Article  CAS  Google Scholar 

  17. Liu, S., Shao, S., Li, L., Cheng, Z., Tian, L., Gao, P., et al. (2015). Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis. Carbohydrate Research, 418, 50–56.

    Article  Google Scholar 

  18. Lyu, Q., Shi, Y., Wang, S., Yang, Y., Han, B., Liu, W., et al. (2015). Structural and biochemical insights into the degradation mechanism of chitosan by chitosanase OU01. Biochimica et Biophysica Acta, 1850, 1953–1961.

    Article  CAS  Google Scholar 

  19. Lyu, Q., Wang, S., Xu, W., Han, B., Liu, W., Jones, D. N., et al. (2014). Structural insights into the substrate-binding mechanism for a novel chitosanase. The Biochemical Journal, 461, 335–345.

    Article  CAS  Google Scholar 

  20. Marcotte, E. M., Monzingo, A. F., Ernst, S. R., Brzezinski, R., & Robertus, J. D. (1996). X-ray structure of an anti-fungal chitosanase from Streptomyces N174. Nature Structural Biology, 3, 155–162.

    Article  CAS  Google Scholar 

  21. Park, J. K., Shimono, K., Ochiai, N., Shigeru, K., Kurita, M., Ohta, Y., et al. (1999). Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. Journal of Bacteriology, 181, 6642–6649.

    CAS  Google Scholar 

  22. Pokhrel, S., Joo, J. C., & Yoo, Y. J. (2013). Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine. Biotechnology and Bioprocess Engineering, 18, 35–42.

    Article  CAS  Google Scholar 

  23. Rye, C. S., & Withers, S. G. (2000). Glycosidase mechanisms. Current Opinion in Chemical Biology, 4, 573–580.

    Article  CAS  Google Scholar 

  24. Shimosaka, M., Kumehara, M., Zhang, X. Y., Nogawa, M., & Okazaki, M. (1996). Cloning and characterization of a chitosanase gene from the plant pathogenic fungus Fusarium solani. Journal of Fermentation and Bioengineering, 82, 426–431.

    Article  CAS  Google Scholar 

  25. Tanabe, T., Morinaga, K., Fukamizo, T., & Mitsutomi, M. (2003). Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Bioscience, Biotechnology, and Biochemistry, 67, 354–364.

    Article  CAS  Google Scholar 

  26. Tremblay, H., Yamaguchi, T., Fukamizo, T., & Brzezinski, R. (2001). Mechanism of chitosanase-oligosaccharide interaction: subsite structure of Streptomyces sp N174 chitosanase and the role of Asp57 carboxylate. The Journal of Biochemistry-Tokyo, 130, 679–686.

    Article  CAS  Google Scholar 

  27. Viens, P., Lacombe-Harvey, M. E., & Brzezinski, R. (2015). Chitosanases from family 46 of glycoside hydrolases: from proteins to phenotypes. Marine Drugs, 13, 6566–6587.

    Article  CAS  Google Scholar 

  28. Xia, W. S., Liu, P., Zhang, J. L., & Chen, J. (2011). Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids, 25, 170–179.

    Article  CAS  Google Scholar 

  29. Zhou, Z. P., Zhao, S. Z., Wang, S. Q., Li, X. M., Su, L., Ma, Y. H., et al. (2015). Extracellular overexpression of chitosanase from Bacillus sp TS in Escherichia coli. Applied Biochemistry and Biotechnology, 175, 3271–3286.

    Article  CAS  Google Scholar 

  30. Zitouni, M., Fortin, M., Scheerle, R. K., Letzel, T., Matteau, D., Rodrigue, S., et al. (2013). Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp 1794 newly isolated from compost. Applied Microbiology and Biotechnology, 97, 5801–5813.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from the Hundred Talents Program of the Chinese Academy of Sciences (CAS), the Knowledge Innovation Program of CAS (KSCX2-EW-G-8), and the Tianjin Municipal Science and Technology Commission (10ZCKFSY05600). J.L. is an Australian National Health and Medical Council (NHMRC) Senior Research Fellow. J.S. is a recipient of the Hundred Talents Program of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangning Song.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors and the authors declare that they have no competing interest.

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhao, S., Liu, Y. et al. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding. Appl Biochem Biotechnol 180, 1167–1179 (2016). https://doi.org/10.1007/s12010-016-2159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2159-8

Keywords

Navigation