Skip to main content
Log in

A Novel Potential Signal Peptide Sequence and Overexpression of ER-Resident Chaperones Enhance Heterologous Protein Secretion in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The thermotolerant methylotrophic yeast Ogataea thermomethanolica is a host for heterologous protein expression via secretion to the culture medium. Efficient secretion is a major bottleneck for heterologous protein production in this strain. To improve protein secretion, we explored whether the use of a native signal peptide sequence for directing heterologous protein secretion and overexpression of native ER-resident chaperone genes could improve heterologous protein secretion in O. thermomethanolica. We cloned and characterized genes encoding α-mating factor (Otα-MF) and ER-resident chaperones OtBiP, OtCNE1, and OtPDI. The pre and pre-pro sequences of Otα-MF were shown to promote higher secretion of heterologous endoxylanase comparing with the classical pre-pro sequence of Saccharomyces cerevisiae. However, in the case of heterologous glycosylated phytase, only the Otα-MF pre-pro sequence significantly enhanced protein secretion. The effect of chaperone overexpression on heterologous protein secretion was tested in cotransformant cells of O. thermomethanolica. Overexpression of ER-resident chaperones improved protein secretion depending on heterologous protein. Overexpression of OtBiP, OtCNE1, and OtPDI significantly increased unglycosylated endoxylanase secretion at both 30 and 37 °C while only OtBiP overexpression enhanced glycosylated phytase secretion at 30 °C. These observations suggested the possibility to improve heterologous protein secretion in O. thermomethanolica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Celik, E., & Calık, P. (2012). Production of recombinant proteins by yeast cells. Biotechnology Advances, 30(5), 1108–1118.

    Article  CAS  Google Scholar 

  2. Idiris, A., Tohda, H., Kumagai, H., & Takegawa, K. (2010). Engineering of protein secretion in yeast: strategies and impact on protein production. Applied Microbiology and Biotechnology, 86(2), 403–417.

    Article  CAS  Google Scholar 

  3. Delic, M., Valli, M., Graf, A. B., Pfeffer, M., Mattanovich, D., & Gasser, B. (2013). The secretory pathway: exploring yeast diversity. FEMS Microbiology Reviews, 37(6), 872–914.

    Article  CAS  Google Scholar 

  4. Yu, P., Zhu, Q., Chen, K., & Lv, X. (2015). Improving the secretory production of the heterologous protein in Pichia pastoris by focusing on protein folding. Applied Biochemistry and Biotechnology, 175(1), 535–548.

    Article  CAS  Google Scholar 

  5. Hegde, R. S., & Bernstein, H. D. (2006). The surprising complexity of signal sequences. Trends in Biochemical Sciences, 31(10), 563–571.

    Article  CAS  Google Scholar 

  6. Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98(12), 5301–5317.

    Article  CAS  Google Scholar 

  7. Jones, S. K., & Bennett, R. J. (2011). Fungal mating pheromones: choreographing the dating game. Fungal Genetics and Biology, 48(7), 668–676.

    Article  CAS  Google Scholar 

  8. Kjeldsen, T., Hach, M., Balschmidt, P., Havelund, S., Pettersson, A. F., & Markussen, J. (1998). Prepro-leaders lacking N-linked glycosylation for secretory expression in the yeast Saccharomyces cerevisiae. Protein Expression and Purification, 14(3), 309–316.

    Article  CAS  Google Scholar 

  9. Rakestraw, J. A., Sazinsky, S. L., Piatesi, A., Antipov, E., & Wittrup, K. D. (2009). Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 103(6), 1192–1201.

    Article  CAS  Google Scholar 

  10. Lin-Cereghino, G. P., Stark, C. M., Kim, D., Chang, J., Shaheen, N., Poerwanto, H., & Lin-Cereghino, J. (2013). The effect of α-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene, 519(2), 311–317.

    Article  CAS  Google Scholar 

  11. Yang, S., Kuang, Y., Li, H., Liu, Y., Hui, X., Li, P., & Wu, D. (2013). Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1′ site. PLoS ONE, 8(9).

  12. Lin, X. Q., Liang, S. L., Han, S. Y., Zheng, S. P., Ye, Y. R., & Lin, Y. (2013). Quantitative iTRAQ LC-MS/MS proteomics reveals the cellular response to heterologous protein overexpression and the regulation of HAC1 in Pichia pastoris. Journal of Proteomics, 91, 58–72.

    Article  CAS  Google Scholar 

  13. Robinson, A. S., Hines, V., & Wittrup, K. D. (1994). Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Bio/Technology, 12(4), 381–384.

    Article  CAS  Google Scholar 

  14. Harmsen, M. M., Bruyne, M. I., Raué, H. A., & Maat, J. (1996). Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant Thaumatin in yeast. Applied Microbiology and Biotechnology, 46(4), 365–370.

    Article  CAS  Google Scholar 

  15. Zhang, W., Zhao, H. L., Xue, C., Xiong, X. H., Yao, X. Q., Li, X. Y., & Liu, Z. M. (2006). Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnology Progress, 22(4), 1090–1095.

    Article  CAS  Google Scholar 

  16. Klabunde, J., Kleebank, S., Piontek, M., Hollenberg, C. P., Hellwig, S., & Degelmann, A. (2007). Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha. FEMS Yeast Research, 7, 1168–1180.

    Article  CAS  Google Scholar 

  17. Qian, W., Liu, Y., Zhang, C., Niu, Z., Song, H., & Qiu, B. (2009). Expression of bovine follicle-stimulating hormone subunits in a Hansenula polymorpha expression system increases the secretion and bioactivity in vivo. Protein Expression and Purification, 68(2), 183–189.

    Article  CAS  Google Scholar 

  18. Zhang, S. T., Fang, H. M., Zhao, L., Tian, Q. N., Qin, Y. F., Lu, P., & Liang, F. (2011). Co-overexpression of PpPDI enhances secretion of ancrod in Pichia pastoris. Applied Biochemistry and Biotechnology, 164(7), 1037–1047.

    Article  CAS  Google Scholar 

  19. Limtong, S., Srisuk, N., Yongmanitchai, W., Yurimoto, H., & Nakase, T. (2008). Ogataea chonburiensis sp. nov. and Ogataea nakhonphanomensis sp. nov., thermotolerant, methylotrophic yeast species isolated in Thailand, and transfer of Pichia siamensis and Pichia thermomethanolica to the genus Ogataea. International Journal of Systematic and Evolutionary Microbiology, 58(1), 302–307.

    Article  CAS  Google Scholar 

  20. Tanapongpipat, S., Promdonkoy, P., Watanabe, T., Tirasophon, W., Roongsawang, N., Chiba, Y., & Eurwilaichitr, L. (2012). Heterologous protein expression in Pichia thermomethanolica BCC16875, a thermotolerant methylotrophic yeast and characterization of N-linked glycosylation in secreted protein. FEMS Microbiology Letters, 334(2), 127–134.

    Article  CAS  Google Scholar 

  21. Harnpicharnchai, P., Promdonkoy, P., Sae-Tang, K., Roongsawang, N., & Tanapongpipat, S. (2014). Use of the glyceraldehyde-3-phosphate dehydrogenase promoter from a thermotolerant yeast, Pichia thermomethanolica, for heterologous gene expression, especially at elevated temperature. Annals Microbiology, 64, 1457–1462.

    Article  CAS  Google Scholar 

  22. Promdonkoy, P., Tirasophon, W., Roongsawang, N., Eurwilaichitr, L., & Tanapongpipat, S. (2014). Methanol-inducible promoter of thermotolerant methylotrophic yeast Ogataea thermomethanolica BCC16875 potential for production of heterologous protein at high temperatures. Current Microbiology, 69(2), 143–148.

    Article  CAS  Google Scholar 

  23. Promdonkoy, P., Tang, K., Sornlake, W., Harnpicharnchai, P., Kobayashi, R. S., Ruanglek, V., & Tanapongpipat, S. (2009). Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiology Letters, 290(1), 18–24.

    Article  CAS  Google Scholar 

  24. Ruanglek, V., Sriprang, R., Ratanaphan, N., Tirawongsaroj, P., Chantasigh, D., Tanapongpipat, S., & Eurwilaichitr, L. (2007). Cloning, expression, characterization, and high cell-density production of recombinant endo-1,4-xylanase from Aspergillus niger in Pichia pastoris. Enzyme and Microbial Technology, 41(1–2), 19–25.

    Article  CAS  Google Scholar 

  25. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.

    Article  CAS  Google Scholar 

  26. Duckert, P., Brunak, S., & Blom, N. (2004). Prediction of proprotein convertase cleavage sites. Protein Engineering, Design and Selection, 17(1), 107–112.

    Article  CAS  Google Scholar 

  27. Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T.-B. G., & Clausen, H. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal, 32(10), 1478–1488.

    Article  CAS  Google Scholar 

  28. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    Article  CAS  Google Scholar 

  29. Engelen, A. J., van der Heeft, F. C., Randsdorp, P. H., & Smit, E. L. (1994). Simple and rapid determination of phytase activity. Journal of AOAC International, 77(3), 760–764.

    CAS  Google Scholar 

  30. Zhang, T., Lei, J., Yang, H., Xu, K., Wang, R., & Zhang, Z. (2011). An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast, 28(11), 795–798.

    Article  CAS  Google Scholar 

  31. Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3), 351–366.

    Article  CAS  Google Scholar 

  32. Gupta, D., & Tuteja, N. (2011). Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signaling & Behavior, 6(2), 232–236.

    Article  CAS  Google Scholar 

  33. Darby, N. J., Kemmink, J., & Creighton, T. E. (1996). Identifying and characterizing a structural domain of protein disulfide isomerase. Biochemistry, 35(32), 10517–10528.

    Article  CAS  Google Scholar 

  34. Ng, D. T. W., Brown, J. D., & Walter, P. (1996). Signal sequences specify the targeting route to the endoplasmic reticulum membrane. Journal of Cell Biology, 134(2), 269–278.

    Article  CAS  Google Scholar 

  35. Fitzgerald, I., & Glick, B. S. (2014). Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microbial Cell Factory, 13(1), 125.

    Article  Google Scholar 

  36. Ihara, Y., Cohen-Doyle, M. F., Saito, Y., & Williams, D. B. (1999). Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Molecular Cell, 4(3), 331–341.

    Article  CAS  Google Scholar 

  37. Danilczyk, U. G., & Williams, D. B. (2001). The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. Journal of Biological Chemistry, 276(27), 25532–25540.

    Article  CAS  Google Scholar 

  38. Smith, J. D., Tang, B. C., & Robinson, A. S. (2004). Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnology and Bioengineering, 85(3), 340–350.

    Article  CAS  Google Scholar 

  39. Robinson, A. S., Bockhaus, J. A., Voegler, A. C., & Wittrup, K. D. (1996). Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae. Journal of Biological Chemistry, 271(17), 10017–10022.

    Article  CAS  Google Scholar 

  40. Butz, J. A., Niebauer, R. T., & Robinson, A. S. (2003). Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast. Biotechnology and Bioengineering, 84(3), 292–304.

    Article  CAS  Google Scholar 

  41. Van Der Heide, M., Hollenberg, C., Van Der Klei, I., & Veenhuis, M. (2002). Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha. Applied Microbiology and Biotechnology, 58(4), 487–494.

    Article  Google Scholar 

  42. Maréchal, A., Tanguay, P.-L., Callejo, M., Guérin, R., Boileau, G., & Rokeach, L. A. (2004). Cell viability and secretion of active proteins in Schizosaccharomyces pombe do not require the chaperone function of calnexin. The Biochemical Journal, 380(Pt 2), 441–448.

    Article  Google Scholar 

  43. Delic, M., Graf, A. B., Koellensperger, G., Haberhauer-Troyer, C., Hann, S., Mattanovich, D., & Gasser, B. (2014). Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion. Microbial Cell, 1(11), 376–386.

    Article  CAS  Google Scholar 

  44. Ruth, C., Buchetics, M., Vidimce, V., Kotz, D., Naschberger, S., Mattanovich, D., & Gasser, B. (2014). Pichia pastoris Aft1—a novel transcription factor, enhancing recombinant protein secretion. Microbial Cell Factory, 13, 120.

    Article  Google Scholar 

  45. Gu, L., Zhang, J., Du, G., & Chen, J. (2015). Multivariate modular engineering of the protein secretory pathway for production of heterologous glucose oxidase in Pichia pastoris. Enzyme and Microbial Technology, 68, 33–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Philip J. Shaw for critically editing the manuscript. Financial support (P-12-01067) from National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand is greatly appreciated. This work was also partially supported by Mahidol University. We thank Dr. Duangdao Wichadakul for Blastp analysis of O. thermomethanolica α-MF. S.K. is thankful for the scholarship from Thailand Graduate Institute of Science and Technology (TGIST). N.R. acknowledges the International Center for Biotechnology, Osaka University for invitation as a visiting research scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niran Roongsawang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roongsawang, N., Puseenam, A., Kitikhun, S. et al. A Novel Potential Signal Peptide Sequence and Overexpression of ER-Resident Chaperones Enhance Heterologous Protein Secretion in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica . Appl Biochem Biotechnol 178, 710–724 (2016). https://doi.org/10.1007/s12010-015-1904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1904-8

Keywords

Navigation