Skip to main content
Log in

Biochemical Characterization of Inducible ‘Reductase’ Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The first step involved in the degradation of phthalate isomers (phthalate, isophthalate and terephthalate) is the double hydroxylation by respective aromatic-ring hydroxylating dioxygenases. These are two component enzymes consisting of ‘oxygenase’ and ‘reductase’ components. Soil isolate Pseudomonas aeruginosa strain PP4 degrades phthalate isomers via protocatechuate and benzoate via catechol ‘ortho’ ring cleavage pathway. Metabolic studies suggest that strain PP4 has carbon source-specific inducible phthalate isomer dioxygenase and benzoate dioxygenase. Thus, it was of interest to study the properties of reductase components of these enzymes. Reductase activity from phthalate isomer-grown cells was 3–5-folds higher than benzoate grown cells. In-gel activity staining profile showed a reductase activity band of R f 0.56 for phthalate isomer-grown cells as compared to R f 0.73 from benzoate-grown cells. Partially purified reductase components from phthalate isomer grown cells showed K m in the range of 30–40 μM and V max = 34–48 μmol min−1 mg−1. However, reductase from benzoate grown cells showed K m = 49 μM and V max = 10 μmol min−1 mg−1. Strikingly similar molecular and kinetic properties of reductase component from phthalate isomer-grown cells suggest that probably the same reductase component is employed in three phthalate isomer dioxygenases. However, reductase component is different, with respect to kinetic properties and zymogram analysis, from benzoate-grown cells when compared to that from phthalate isomer grown cells of PP4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aliverti, A., Pandini, V., Pennati, A., de Rosa, M., & Zanetti, G. (2008). Structural and functional diversity of ferredoxin-NADP(+) reductases. Archives of Biochemistry and Biophysics, 474, 283–291.

    Article  CAS  Google Scholar 

  2. Ryan, A., Kaplan, E., Nebel, J. C., Polycarpou, E., Crescente, V., Lowe, E., Preston, G. M., & Sim, E. (2014). Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes. PloS One, 9, e98551.

    Article  Google Scholar 

  3. Penning, T. M. (2004). Aldo-keto reductases and formation of polycyclic aromatic hydrocarbon o-quinones. Methods in Enzymology, 378, 31–67.

    Article  CAS  Google Scholar 

  4. Mason, J. R., & Cammack, R. (1992). The electron-transport proteins of hydroxylating bacterial dioxygenases. Annual Reviews in Microbiology, 46, 277–305.

    Article  CAS  Google Scholar 

  5. Autian, J. (1973). Toxicity and health threats of phthalate esters: review of the literature. Environmental Health Perspectives, 4, 3–26.

    Article  CAS  Google Scholar 

  6. Jaeger, R. J., & Rubin, R. J. (1973). Phthalate ester metabolism in the isolated, perfused rat liver system. Environmental Health Perspectives, 3, 49–51.

    Article  CAS  Google Scholar 

  7. Vamsee-Krishna, C., & Phale, P. S. (2008). Bacterial degradation of phthalate isomers and their esters. Indian Journal of Microbiology, 48, 19–34.

    Article  CAS  Google Scholar 

  8. Butler, C. S., & Mason, J. R. (1997). Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Advances in Microbial Physiology, 38, 47–84.

    Article  CAS  Google Scholar 

  9. Haigler, B. E., & Gibson, D. T. (1990). Purification and properties of NADH-ferredoxinNAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. Journal of Bacteriology, 172, 457–464.

    CAS  Google Scholar 

  10. Hurtubise, Y., Barriault, D., Powlowski, J., & Sylvestre, M. (1995). Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. Journal of Bacteriology, 177, 6610–6618.

    CAS  Google Scholar 

  11. Subramanian, V., Liu, T. N., Yeh, W. K., Narro, M., & Gibson, D. T. (1981). Purification and properties of NADH-ferredoxinTOL reductase A component of toluene dioxygenase from Pseudomonas putida. Journal of Biological Chemistry, 256, 2723–2730.

    CAS  Google Scholar 

  12. Batie, C. J., LaHaie, E., & Ballou, D. P. (1987). Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. Journal of Biological Chemistry, 262, 1510–1518.

    CAS  Google Scholar 

  13. Gassner, G. T., Ludwig, M. L., Gatti, D. L., Correll, C. C., & Ballou, D. P. (1995). Structure and mechanism of the iron-sulfur flavoprotein phthalate dioxygenase reductase. FASEB Journal, 9, 1411–1418.

    CAS  Google Scholar 

  14. Correll, C. C., Batie, C. J., Ballou, D. P., & Ludwig, M. L. (1985). Crystallographic characterization of phthalate oxygenase reductase, an iron-sulfur flavoprotein from Pseudomonas cepacia. Journal of Biological Chemistry, 260, 14633–14635.

    CAS  Google Scholar 

  15. Fukuhara, Y., Kasai, D., Katayama, Y., Fukuda, M., & Masai, E. (2008). Enzymatic properties of terephthalate 1,2-dioxygenase of Comamonas sp. strain E6. Bioscience Biotechnology and Biochemistry, 72, 2335–2341.

    Article  CAS  Google Scholar 

  16. Vamsee-Krishna, C., Mohan, Y., & Phale, P. S. (2006). Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Applied Microbiology and Biotechnology, 72, 1263–1269.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

  18. Kojima, Y., Itada, N., & Hayaishi, O. (1961). Metapyrocatechase: a new catechol-cleaving enzyme. Journal of Biological Chemistry, 236, 2223–2228.

    CAS  Google Scholar 

  19. Hayaishi, O., Katagiri, M., & Rothberg, S. (1957). Studies on oxygenases; pyrocatechase. Journal of Biological Chemistry, 229, 905–920.

    CAS  Google Scholar 

  20. Fujisawa, H., & Hayaishi, O. (1968). Protocatechuate 3,4-dioxygenase I. Crystallization and characterization. Journal of Biological Chemistry, 243, 2673–2681.

    CAS  Google Scholar 

  21. Steyn-Parve, E. P., & Beinert, H. (1958). On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme a VI. Isolation and properties of stable enzyme-substrate complexes. Journal of Biological Chemistry, 233, 843–852.

    CAS  Google Scholar 

  22. Schlafli, H. R., Weiss, M. A., Leisinger, T., & Cook, A. M. (1994). Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. Journal of Bacteriology, 176, 6644–6652.

    CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Garcia, L. L., Rivas-Marin, E., Floriano, B., Bernhardt, R., Ewen, K. M., Reyes-Ramirez, F., & Santero, E. (2011). ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. Journal of Biological Chemistry, 286, 1709–1718.

    Article  Google Scholar 

  25. Nikiforova, A. B., Saris, N. E., & Kruglov, A. G. (2014). External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3? Free Radical Biology and Medicine, 74, 74–84.

    Article  CAS  Google Scholar 

  26. Bae, M., & Kim, E. (2000). Association of a common reductase with multiple aromatic terminal dioxygenases in Sphingomonas yanoikuyae strain B1. Journal of Microbiology, 38, 40–43.

    CAS  Google Scholar 

  27. Parales, R. E., Huang, R., Yu, C. L., Parales, J. V., Lee, F. K., Lessner, D. J., Ivkovic-Jensen, M. M., Liu, W., Friemann, R., Ramaswamy, S., & Gibson, D. T. (2005). Purification, characterization, and crystallization of the components of the nitrobenzene and 2-nitrotoluene dioxygenase enzyme systems. Applied and Environmental Microbiology, 71, 3806–3814.

    Article  CAS  Google Scholar 

  28. Zhou, N. Y., Al-Dulayymi, J., Baird, M. S., & Williams, P. A. (2002). Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. Journal of Bacteriology, 184, 1547–1555.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Research grant from Department of Biotechnology, Govt. of India to PP and Senior research fellowship to RK from IIT-B is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant S. Phale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karandikar, R., Badri, A. & Phale, P.S. Biochemical Characterization of Inducible ‘Reductase’ Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4. Appl Biochem Biotechnol 177, 318–333 (2015). https://doi.org/10.1007/s12010-015-1744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1744-6

Keywords

Navigation