Skip to main content
Log in

Production of Xylitol from d-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient bioconversion of d-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared d-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in d-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from d-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L d-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Bioethanol—the fuel of tomorrow from the residues of today. Trends in Biotechnology, 24, 549–556.

    Article  CAS  Google Scholar 

  2. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.

    Article  CAS  Google Scholar 

  3. Zhang, W., & Geng, A. L. (2012). Improved ethanol production by a xylose fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnology for Biofuels, 5, 46.

    Article  CAS  Google Scholar 

  4. Jeffries, T. W., & Jin, Y. S. (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology, 63, 495–509.

    Article  CAS  Google Scholar 

  5. Guo, X. X., Zhang, R. H., Li, Z., Dai, D. Z., Li, C., & Zhou, X. H. (2013). A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresource Technology, 128, 547–552.

    Article  CAS  Google Scholar 

  6. Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp IIPE453. Journal of Industrial Microbiology & Biotechnology, 36, 1483–1489.

    Article  CAS  Google Scholar 

  7. Sasaki, M., Jojima, T., Inui, M., & Yukawa, H. (2010). Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 86, 1057–1066.

    Article  CAS  Google Scholar 

  8. Pasha, C., Kuhad, R. C., & Venkateswar, R. L. (2007). Stain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates. Journal of Applied Microbiology, 103, 1480–1489.

    Article  CAS  Google Scholar 

  9. Zhuge, J., Fang, H. Y., Wang, Z. X., Chen, D. Z., Jin, H. R., & Gu, H. L. (2001). Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Applied Microbiology and Biotechnology, 55, 686–692.

    Article  CAS  Google Scholar 

  10. Wang, Z. X., Zhuge, J., Fang, H., & Prior, B. A. (2001). Glycerol production by microbial fermentation: a review. Biotechnology Advances, 19, 201–223.

    Article  CAS  Google Scholar 

  11. Jin, H. R., Fang, H. Y., & Zhuge, J. (2003). By-product formation by a novel glycerol-producing yeast, Candida glycerinogenes, with different O2 supplies. Biotechnology Letters, 25, 311–314.

    Article  CAS  Google Scholar 

  12. Xie, T., Fang, H. Y., Zhuge, B., & Zhuge, J. (2009). Promotional mechanism of high glycerol productivity in the aerobic batch fermentation of Candida glycerinogenes after feeding several amino acids. Applied Biochemistry and Microbiology, 45, 303–308.

    Article  CAS  Google Scholar 

  13. Zhao, L., Zhang, X., & Tan, T. (2008). Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass and Bioenergy, 32, 1156–1161.

    Article  CAS  Google Scholar 

  14. Joshua, S. Y., Jason, B., Nathan, R. S., Ayalew, M., & CNeal, S., Jr. (2007). Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinformatics, 8, S6.

    Google Scholar 

  15. Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Applied Microbiology and Biotechnology, 84, 37–53.

    Article  CAS  Google Scholar 

  16. Ko, B. S., Kim, J., & Kim, J. H. (2006). Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Applied and Environmental Microbiology, 72, 4207–4213.

    Article  CAS  Google Scholar 

  17. Ko, B. S., Rhee, C. H., & Kim, J. H. (2006). Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnology Letters, 28, 1159–1162.

    Article  CAS  Google Scholar 

  18. Zhang, C., Zong, H., Zhuge, B., Lu, X. Y., Fang, H. Y., & Zhuge, J. (2015). Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in osmotolerant yeast, Candida glycerinogenes WL2002-5. Journal of Industrial Microbiology & Biotechnology, 42, 113–124.

    Article  Google Scholar 

  19. Chen, X. Z., Fang, H. Y., Rao, Z. M., Shen, W., Zhuge, B., Wang, Z. X., & Zhuge, J. (2008). Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Research, 8, 725–734.

    Article  CAS  Google Scholar 

  20. Ponchel, F. (2003). Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnology, 3, 18.

    Article  Google Scholar 

  21. Hernandez, M., Esteve, T., Prat, S., & Pla, M. (2004). Development of realtime PCR systems based on SYBR Green I, Amplifluor and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21. Journal of Cereal Science, 39, 99–107.

    Article  CAS  Google Scholar 

  22. Grace, Q. C., & Jiann-Tsyh, L. (2010). Use of quantitative polymerase chain reaction for determining copy numbers of transgenes in Lesquerella fendleri. American Journal of Agricultural Economics, 5, 415–421.

    Google Scholar 

  23. Zhang, C., Zhuge, B., Zhan, X. B., Fang, H. Y., Zong, H., & Zhuge, J. (2013). Cloning and characterization of a novel NAD+-dependent glyceraldehyde-3-phosphate dehydrogenasegene from Candida glycerinogenes and use of its promoter. Yeast, 30, 157–163.

    Article  Google Scholar 

  24. Ballester, M., Castelló, A., Ibáñez, E., Sánchez, A., & Folch, J. M. (2004). Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. Biotechnology Techniques, 37, 610–613.

    CAS  Google Scholar 

  25. Molishree, U. J., Keith, H. P., Carl, E. H., & Kathryn, M. V. (2008). Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice. Biotechnology Techniques, 45, 247–258.

    Google Scholar 

  26. Eliasson, A., Christensson, C., Wahlbom, C. F., & Hahn-Hagerdal, B. (2000). Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and Environmental Microbiology, 66, 3381–3386.

    Article  CAS  Google Scholar 

  27. Wang, M., Fu, J., Zhang, X., & Chen, T. (2012). Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnology Letters, 34, 1877–1885.

    Article  Google Scholar 

  28. Meiswinkel, T. M., Gopinath, V., Lindner, S. N., Nampoothiri, K. M., & Wendisch, V. F. (2013). Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microbial Biotechnology, 6, 131–140.

    Article  Google Scholar 

  29. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  30. Yeung, P., Ding, L., & Casley, W. L. (2008). HPLC assay with UV detection for determination of RBC purine nucleotide concentrations and application for biomarker study in vivo. Journal of Pharmaceutical and Biomedical, 47, 377–382.

    Article  CAS  Google Scholar 

  31. Sato, K., Yoshida, Y., Hirahara, T., & Ohba, T. (2000). On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. Journal of Bioscience and Bioengineering, 90, 294–301.

    Article  CAS  Google Scholar 

  32. Kleinzeller, A., & Kotyk, A. (1967). Transport of monosaccharides in yeast cells and its relationship to cell metabolism. In A. K. Mills & H. Krebs (Eds.), Aspects of yeast metabolism (pp. 33–45). Philadelphia: F. A. Davis Co.

    Google Scholar 

  33. Kotyk, A. (1967). Properties of the sugar carrier in baker’s yeast. II. Specificity of transport. Folia Microbiologica, 12, 121–131.

    Article  CAS  Google Scholar 

  34. Cirillo, V. P. (1968). Relationship between sugar structure and competition for the sugar transport system in baker’s yeast. Journal of Bacteriology, 95, 603–611.

    CAS  Google Scholar 

  35. Bisson, L. F., Neigeborn, L., Carlson, M., & Fraenkel, D. G. (1987). The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. Journal of Bacteriology, 169, 1656–1662.

    CAS  Google Scholar 

  36. Busturia, A., & Lagunas, R. (1986). Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. Journal of General Microbiology, 132, 379–385.

    CAS  Google Scholar 

  37. Serrano, R., & Delafuente, G. (1974). Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 5, 161–171.

    Article  CAS  Google Scholar 

  38. Vall, Z. C., Prior, B. A., Kilian, S. Q., & Brandt, E. V. (1993). Role of D-ribose cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 59, 1487–1494.

    Google Scholar 

  39. Bruinenberg, P. M., Van, D. J. P., & Scheffers, W. A. (1983). A theoretical analysis of NADPH production and consumption in yeasts. Journal of General Microbiology, 129, 953–964.

    CAS  Google Scholar 

  40. Peng, B., Shen, Y., Li, X., Chen, X., Hou, J., & Bao, X. (2012). Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metabolic Engineering, 14, 9–18.

    Article  CAS  Google Scholar 

  41. Parachin, N. S., Bergdahl, B., van Niel, E. W. J., & Gorwa-Grauslund, M. F. (2011). Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 13, 508–517.

    Article  CAS  Google Scholar 

  42. Young, E. M., Poucher, A., Comer, A., Bailey, A., & Alper, H. S. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied and Environmental Microbiology, 77, 3311–3319.

    Article  CAS  Google Scholar 

  43. Chung, Y. S., Kim, M. D., Lee, W. J., Ryu, Y. W., Kim, J. H., & Seo, J. H. (2002). Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 30, 809–816.

    Article  CAS  Google Scholar 

  44. Kwon, D. H., Kim, M. D., Lee, T. H., Oh, Y. J., Ryu, Y. W., & Seo, J. H. (2006). Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 43, 86–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by China National “863” High-Tech Program (No. 2012AA021201, No. 2011AA02A207) and supported by the National Natural Science Foundation of China (No. 31270080) and Jiangnan University Independent Scientific Research Programs (No. JUSRP1008, No. JUSRP11431), the Natural Science Foundation of Jiangsu province (No. BK20140134, No. BK20140138) and Six talent peaks project in Jiangsu Province (NO. 2014-XCL-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhuge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zong, H., Zhuge, B. et al. Production of Xylitol from d-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol 176, 1511–1527 (2015). https://doi.org/10.1007/s12010-015-1661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1661-8

Keywords

Navigation