Skip to main content
Log in

Behavior of Cellulose and Xylan in Aqueous Ammonia Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of aqueous ammonia on the solubilization of cellulose and xylans was investigated by detecting the amounts of reducing sugars and monosaccharides in the treatment liquors. The degree of cellulose and xylan solubilization increased with the increase of treatment temperature. When the treatment temperature increased from 20 to 90 °C, the amounts of reducing sugars released from Avicel and cellulose fiber by 21 % ammonia at a solid to liquid ratio of 1:10 for 24 h increased from 1.0 and 0.9 to 4.4 and 2.7 mg/g dry matter (DM), respectively. The amounts of reducing sugars released from wheat straw, beechwood, and oat spelt xylans increased from 1.2–7.0 to 3.3–13.5 mg/g DM. Xylans appeared to be more susceptible than cellulose in aqueous ammonia treatment. Structure analysis of untreated and treated Avicel and cellulose fiber showed that aqueous ammonia increased the specific surface area and crystallinity index of cellulose. Most of the cellulose and xylan that were solubilized existed in the form of oligomers such as cello-oligosaccharides and xylo-oligosaccharides. Xylobiose and xylotriose were the main oligosaccharides released from oat spelt xylan by aqueous ammonia treatment as confirmed by electrospray ionization-mass spectrometry. The results here indicated that a slight amount of cellulose and xylans was solubilized and low amounts of cellulase inhibitors, oligomers, were found during mild aqueous ammonia pretreatment process. Therefore, from the economical perspectives, mild ammonia pretreatment would be favorable for aqueous ammonia pretreatment of lignocelluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BWX:

Beechwood xylan

CI:

Crystallinity index

COS:

Cello-oligosaccharides

ESI-MS:

Electrospray ionization-mass spectrometry

FTIR:

Fourier transform infrared spectroscopy

OSX:

Oat spelt xylan

WSX:

Wheat straw xylan

XOS:

Xylo-oligosaccharides

XRD:

X-ray diffraction

References

  1. Duff, S. J. B., & Murray, W. D. (1996). Bioresource Technology, 55(1), 1–33.

    Article  CAS  Google Scholar 

  2. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  3. Jøgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels Bioproducts & Biorefining, 1(2), 119–134.

    Article  Google Scholar 

  4. Mosier, N., Wyman, C. E., Dale, B. E., Elander, R. T., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  5. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Bioresource Technology, 96(18), 1959–1966.

    Article  CAS  Google Scholar 

  6. Avellar, B. K., & Glasser, W. G. (1998). Biomass and Bioenergy, 14(3), 205–218.

    Article  CAS  Google Scholar 

  7. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Bioresource Technology, 90(1), 39–47.

    Article  CAS  Google Scholar 

  8. Chen, M., Zhao, J., & Xia, L. (2009). Biomass and Bioenergy, 33(10), 1381–1385.

    Article  CAS  Google Scholar 

  9. Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). Bioresource Technology, 81(1), 33–44.

    Article  CAS  Google Scholar 

  10. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., & Baker, J. (1984). Biotechnology and Bioengineering Symposium, 14, 137–157.

    CAS  Google Scholar 

  11. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Process Biochemistry, 40(12), 3693–3700.

    Article  CAS  Google Scholar 

  12. Gregg, D., & Saddler, J. N. (1996). Applied Biochemistry and Biotechnology, 57(58), 711–727.

    Article  Google Scholar 

  13. Barry, A. J., Peterson, F. C., & King, A. J. (1936). Journal of the American Chemical Society, 58, 333–337.

    Article  CAS  Google Scholar 

  14. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121–124, 1119–1132.

    Article  Google Scholar 

  15. Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Journal of Scientific and Industrial Research, 67, 849–864.

    CAS  Google Scholar 

  16. Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2013). Bioresource Technology, 135, 23–29.

    Article  CAS  Google Scholar 

  17. Rémond, C., Aubry, Crônier, S., Noël, S., Martel, F., Roge, B., Rakotoarivonina, H., Debeire, P., & Chabbert, B. (2010). Bioresource Technology, 101, 6712–6717.

    Article  Google Scholar 

  18. Iyer, P. V., Wu, Z. W., Kim, S. B., & Lee, Y. Y. (1996). Applied Biochemistry and Biotechnology, 57–58, 121–132.

    Article  Google Scholar 

  19. Gupta, R., & Lee, Y. Y. (2010). Bioresource Technology, 101(21), 8185–8191.

    Article  CAS  Google Scholar 

  20. Kim, T. H., & Lee, Y. Y. (2007). Applied Biochemistry and Biotechnology, 136–140, 81–92.

    Google Scholar 

  21. Xiao, B., Sun, X. F., & Sun, R. C. (2001). Polymer Degradation and Stability, 74(2), 307–319.

    Article  CAS  Google Scholar 

  22. Miller, G. L. (1959). Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  23. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Biotechnology for Biofuels, 3, 10.

    Article  Google Scholar 

  24. Murdock, C. C. (1930). Physics Review, 35, 8–23.

    Article  CAS  Google Scholar 

  25. Lewin, M., & Roldan, L. G. (1971). Journal of Polymer Science, Part C: Polymer Symposia, 36(1), 213–229.

    Article  Google Scholar 

  26. Kim, J., Kim, K. S., Lee, J., Park, S. M., Cho, H., Park, J. C., & Kim, J. S. (2011). Bioresource Technology, 102(19), 8992–8999.

    Article  CAS  Google Scholar 

  27. Kim, T. H., & Lee, Y. Y. (2006). Bioresource Technology, 97(2), 224–232.

    Article  CAS  Google Scholar 

  28. Kim, J. W., & Mazza. (2008). Industrial Crops and Products, 28, 346–355.

    Article  CAS  Google Scholar 

  29. Hu, F., & Ragauskas, A. (2012). BioEnergy Research, 5, 1043–1066.

    Article  CAS  Google Scholar 

  30. Yoon, H. H., Wu, Z. W., & Lee, Y. Y. (1995). Applied Biochemistry and Biotechnology, 51–52, 5–19.

    Article  Google Scholar 

  31. Liu, L. L., Sun, J., Cai, C., Wang, S., Pei, H., & Zhang, J. (2009). Bioresource Technology, 100(23), 5856–5871.

    Google Scholar 

  32. Mittal, A., Katahira, R., Himmel, M. E., & Johnson, D. K. (2011). Biotechnology for Biofuels, 4, 41.

    Article  CAS  Google Scholar 

  33. Qing, Q., Yang, B., & Wyman, C. E. (2010). Bioresource Technology, 101(24), 9624–9630.

    Article  CAS  Google Scholar 

  34. Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Bioresource Technology, 100(17), 3948–3962.

    Article  CAS  Google Scholar 

  35. Jia, L. L., Sun, Z. P., Ge, X. Y., Xin, D. L., & Zhang, J. H. (2013). Bioresources, 8(3), 4505–4517.

    Article  Google Scholar 

  36. Várnai, A., Kuikko, L., Pere, J., Siika-aho, M., & Viikari, L. (2011). Bioresource Technology, 102(19), 9096–9104.

    Article  Google Scholar 

  37. Sun, R. C., Mark Lawther, J., & Banks, W. B. (1995). Industrial Crops and Products, 4, 127–145.

    Article  CAS  Google Scholar 

  38. Peng, P., Pen, J., Xu, F., Bian, J., Peng, P., & Sun, R. C. (2009). Journal of Agricultural and Food Chemistry, 57(14), 6305–6317.

    Article  CAS  Google Scholar 

  39. Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Bioresource Technology, 101(13), 4907–4913.

    Article  CAS  Google Scholar 

  40. Sun, R. C., & Tomkinson, J. (2003). European Polymer Journal, 39(4), 751–759.

    Article  CAS  Google Scholar 

  41. Janker-Obermeier, I., Sieber, V., Faulstich, M., & Schieder, D. (2012). Industrial Crops and Products, 39, 198–203.

    Article  CAS  Google Scholar 

  42. Li, Z., Jiang, Z., Fei, B., Cai, Z., & Pan, X. (2014). Bioresource Technology, 151, 91–99.

    Article  CAS  Google Scholar 

  43. Voutilainen, S. P., Puranen, T. P., Siika-aho, M., Lappalainen, A., Alapuranen, M., Kallio, J., Hooman, S., Viikri, L., Vehmaanperä, J., & Koivula, A. (2008). Bioresource Technology, 101(3), 515–528.

    CAS  Google Scholar 

  44. Zhang, J., & Viikari, L. (2012). Bioresource Technology, 117, 286–291.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (31270622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, D., Jia, L., Zhao, C. et al. Behavior of Cellulose and Xylan in Aqueous Ammonia Pretreatment. Appl Biochem Biotechnol 174, 2626–2638 (2014). https://doi.org/10.1007/s12010-014-1214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1214-6

Keywords

Navigation