Skip to main content
Log in

Development of a Biological Protocol for Endotoxin Detection Using Quartz Crystal Microbalance (QCM)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, a biological protocol for endotoxin detection has been developed and optimized by quartz crystal microbalance (QCM). The parameters involved in the formation of the self-assembled monolayer (SAM) have been analyzed, and a study of the pH of the ligand buffer has been performed in order to find the best condition for the ligand immobilization and, in consequence, for the endotoxin detection. The detection limit obtained with the characterized biological protocol corresponds to 1.90 μg/ml. The effectiveness of the optimized biological protocol has been analyzed by cyclic voltammetry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Negredo, J., & Real, M. (2012). www.anisalud.com September, 2012.

  2. Chaby, R. (1999). Drug Discovery Today, 4, 209–221.

    Article  CAS  Google Scholar 

  3. Cohen, J. (2002). Nature, 420, 885–891.

    Article  CAS  Google Scholar 

  4. Park, C. Y., Yung, S. H., Bak, J. P., Lee, S. S., & Rhee, D. K. (2005). Biologicals, 33, 145–151.

    Article  CAS  Google Scholar 

  5. Harmon, P., Cabral-Lilly, D., Reed, R. A., Maurio, F. P., Franklin, J. C., & Janoff, A. (1997). Analytical Biochemistry, 250, 139–146.

    Article  CAS  Google Scholar 

  6. Ong, K. G., Leland, J. M., Zeng, K., Barrett, G., Zourob, M., & Grimes, C. (2006). Biosensors & Bioelectronics, 21, 2270–2274.

    Article  CAS  Google Scholar 

  7. Daneshian, M., Wendel, A., Hartung, T., & von Aulock, S. (2008). Journal of Immunological Methods, 336, 64–70.

    Article  CAS  Google Scholar 

  8. Grallert, H., Leopoldseder, S., Schuett, M., Kurze, P., Buchberger, B. (2011). Nature Methods, 8,

  9. Gee, A. P., Sumstad, D., Stanson, J., Watson, P., Proctor, J., Kadidlo, D., Koch, E., Sprague, J., Wood, D., Styers, D., McKenna, D., Gallelli, J., Griffin, D., Read, E. J., Parish, B., & Lindblad, R. (2008). Cytotherapy, 10(4), 427–435.

    Article  CAS  Google Scholar 

  10. Bashir, R. (2004). Advanced Drug Delivery Reviews, 56, 1565–1586.

    Article  CAS  Google Scholar 

  11. Brandenburg, K., David, A., Howe, J., Koch, M. H. J., Andrä, J., & Garidel, P. (2005). Biophysical Journal, 88, 1845–1858.

    Article  CAS  Google Scholar 

  12. Brandenburg, K., Moriyon, I., Arraiza, M. D., Lewark-Yvetot, G., Koch, M. H. J., & Seydel, U. (2002). Thermochimica Acta, 382, 189–198.

    Article  CAS  Google Scholar 

  13. Morrison, D. C., & Jacobs, D. M. (1976). Immunochemistry, 13, 813–818.

    Article  CAS  Google Scholar 

  14. Baldrich, E., Laczka, O., Del Campo, F. J., & Muñoz, F. X. (2008). Journal of Immunological Methods, 336, 203–212.

    Article  CAS  Google Scholar 

  15. Chen, D., & Li, J. (2006). Surface Science Reports, 61, 445–463.

    Article  CAS  Google Scholar 

  16. Shankaran, D. R., Gobi, K. V., & Miura, N. (2007). Sensors and Actuators B: Chemical, 121, 158–177.

    Article  CAS  Google Scholar 

  17. Pillay, J., Agboola, B. O., & Ozoemena, K. I. (2009). Electrochemistry Communications, 11, 1292–1296.

    Article  CAS  Google Scholar 

  18. Ansorena, P., Zuzuarregui, A., Pérez-Lorenzo, E., Mujika, M., & Arana, S. (2011). Sensors and Actuators B: Chemical, 155, 667–672.

    Article  CAS  Google Scholar 

  19. Jang, L. S., & Keng, H. K. (2008). Biomedical Microdevices, 10, 203–211.

    Article  CAS  Google Scholar 

  20. Jiayu, W., Xiong, W., Jiping, L., Wensen, L., Ming, X., Linna, L., Jing, X., Haiying, W., & Hongwei, G. (2009). Archives of Virology, 154, 1901–1908.

    Article  Google Scholar 

  21. Schirhagl, R., Latif, U., Podlipna, D., Blumenstock, H., & Dickert, F. (2012). Analytical Chemistry, 84, 3908–3913.

    Article  CAS  Google Scholar 

  22. Damos, F. S., Mendes, R. K., & Kubota, L. T. (2004). Quim Nova, 27, 970–979.

    Article  CAS  Google Scholar 

  23. Ogi, H. (2013). Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 89(9), 401–417.

    Article  CAS  Google Scholar 

  24. Sauerbray, G. (1959). Zeitschrift für Physik, 155, 206–222.

    Article  Google Scholar 

  25. Kanazawa, K. K., & Gordon, J. (1985). Analytical Chemistry, 57, 1770.

    Article  CAS  Google Scholar 

  26. García, T., Revenga-Parra, M., Añorga, L., Pariente, F., & Lorenzo, E. (2012). Sensors and Actuators B: Chemical, 161(1), 1030–1037.

    Article  Google Scholar 

  27. Touahir, L., Allongue, P., Aureau, D., Boukherroub, R., Chazalviel, J. N., Galopin, E., Gouget-Laemmel, A. C., de Villeneuve, C. H., Moraillon, A., Niedziólka-Jönsson, J., Ozanam, F., Andresa, J. S., Sam, S., Solomon, I., & Szunerits, S. (2010). Bioelectrochemistry, 80, 17–25.

    Article  CAS  Google Scholar 

  28. Arya, S. K., Solanki, P. R., Datta, M., & Malhotra, B. D. (2009). Biosensors and Bioelectronics, 24, 2810–2817.

    Article  CAS  Google Scholar 

  29. Briand, E., Salmain, M., Compère, C., & Pradier, C. M. (2006). Colloids and Surfaces B: Biointerfaces, 53, 215–224.

    Article  CAS  Google Scholar 

  30. Priano, G., Pallarola, D., & Battaglini, F. (2007). Analytical Biochemistry, 362, 108–116.

    Article  CAS  Google Scholar 

  31. Skottrup, P. D., Nicolaisen, M., & Justesen, A. F. (2008). Biosensors & Bioelectronics, 24(3), 339–348.

    Article  CAS  Google Scholar 

  32. Yamasaki, R., Kim, J., Jung, H., Lee, H. Y., & Kawai, T. (2006). Biochemical Engineering Journal, 29, 125–128.

    Article  CAS  Google Scholar 

  33. Xia, N., Xing, Y., Wang, G., Feng, Q., Chen, Q., & Feng, H. (2013). International Journal of Electrochemical Science, 8, 2459–2467.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of Navarra for the funding that supported this project and the Department of Microbiology of The University of Navarra. We also acknowledge the Secretary of State of Investigation, Development and Innovation of the Ministry of Economy and Competitivity of Spain for funding this research within the framework of the SIMcell Project DPI 2012-38090-C03-D3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pérez-Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Lorenzo, E., Zuzuarregui, A., Arana, S. et al. Development of a Biological Protocol for Endotoxin Detection Using Quartz Crystal Microbalance (QCM). Appl Biochem Biotechnol 174, 2492–2503 (2014). https://doi.org/10.1007/s12010-014-1198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1198-2

Keywords

Navigation