Skip to main content
Log in

Thiol Modified Chitosan Self-Assembled Monolayer Platform for Nucleic Acid Biosensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A self-assembled monolayer (SAM) of thiol modified chitosan (SH-CHIT), with thioglycolic acid (TGA) as a modifier to bestow thiol groups, has been prepared onto gold (Au)-coated glass plates for fabrication of the nucleic acid biosensor. The chemical modification of CHIT via TGA has been evidenced by Fourier transform infrared spectroscopy (FT-IR) studies, and the biocompatibility studies reveal that CHIT retains its biocompatible nature after chemical modification. The electrochemical studies conducted onto SH-CHIT/Au electrode reveal that thiol modification in CHIT amino end enhances the electrochemical behavior indicating that it may be attributed to delocalization of electrons in CHIT skeleton that participates in the resonance process. The carboxyl group modified end of DNA probe has been immobilized onto SH-CHIT/Au electrode using N-ethyl-N′-(3-dimethylaminopropyl)carbodimide (EDC) and N-hydroxysuccinimide (NHS) chemistry for detection of complementary, one-base mismatch and non-complementary sequence using electrochemical and optical studies for Mycobacterium tuberculosis detection. It has been found that DNA-SH-CHIT/Au bioelectrode can specifically detect 0.01 μM of target DNA concentration with sensitivity of 1.69 × 10−6 A μM−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leegsma-Vogt, G., Rhemrev-Boom, M. M., Tiessen, R. G., Venema, K., Korf, J., Jeffrey, M., Halliday, W. G., & Taylor, K. C. (2004). Biomedical Materials and Engineering, 14, 455–464.

    Google Scholar 

  2. Singh, R., Verma, R., Sumana, G., Srivastava, A. K., Sood, S., Gupta, R. K., & Malhotra, B. D. (2012). Bioelectrochemistry, 86, 30–37.

    Article  CAS  Google Scholar 

  3. Das, M., Sumana, G., Nagarajan, R., & Malhotra, B. D. (2010). Applied Physics Letters, 96, 133706.

    Google Scholar 

  4. Das, M., Dhand, C., Sumana, G., Srivasrava, A. K., Nagarajan, R., Nain, L., Iwamoto, M., Manaka, T., & Malhotra, B. D. (2011). Biomacromolecules, 12, 540–547.

    Article  CAS  Google Scholar 

  5. Chun, A. L. (2009). Nature Nanotechnology, 4, 698–699.

    Article  CAS  Google Scholar 

  6. Thanyani, S. T., Robert, V., Siko, D. R. G., Very, P., & Verschoor, J. A. (2008). Journal of Immunological Methods, 332, 61–72.

    Article  CAS  Google Scholar 

  7. Russell, D. G. (2001). Nature Reviews Molecular Cell Biology, 2, 569–577.

    Article  CAS  Google Scholar 

  8. Good, M. C., Greenstein, A. E., Young, T. A., Ng, H. L., & Albert, T. (2004). Journal of Molecular Biology, 339, 459–469.

    Article  CAS  Google Scholar 

  9. Wang, L., & Wang, E. (2004). Electrochemistry Communications, 6, 49–54.

    Article  CAS  Google Scholar 

  10. Shan, D., Han, E., Xue, H., & Cosnier, S. (2007). Biomacromolecules, 8, 3041–3046.

    Article  CAS  Google Scholar 

  11. Francia, G. D., Ferrara, V. L., Manzo, S., & Chiavarini, S. (2005). Biosensors and Bioelectronics, 21, 661–665.

    Article  Google Scholar 

  12. Kaushik, A., Solanki, P. R., Ansari, A. A., Ahmad, S., & Malhotra, B. D. (2008). Electrochemistry Communications, 10, 1364–1368.

    Article  CAS  Google Scholar 

  13. Guggi, D., Langoth, N., Hoffer, M. H., Wirth, M., & Schnurch, A. B. (2004). Journal of Pharmacognosy, 278, 353–360.

    CAS  Google Scholar 

  14. Solanki, P. R., Arya, S. K., Nishimura, Y., Iwamoto, M., & Malhotra, B. D. (2007). Langmuir, 23, 7398–7403.

    Article  CAS  Google Scholar 

  15. Solanki, P. R., Prabhakar, N., Pandey, M. K., & Malhotra, B. D. (2008). Biomedical Microdevices, 10, 757–767.

    Article  CAS  Google Scholar 

  16. Zhu, X., Su, M., Tang, S., Wang, L., Liang, X., Meng, F., Hong, Y., & Xu, Z. (2012). Molecular Vision, 18, 1973–1982.

    CAS  Google Scholar 

  17. Schnürch, A. B., Hornof, M., & Zoidl, T. (2003). International Journal of Pharmaceutics, 260, 229–237.

    Article  Google Scholar 

  18. Cathell, M. D., Szewczyk, J. C., Bui, F. A., Weber, C. A., Wolever, J. D., Kang, J., & Schauer, C. L. (2008). Biomacromolecules, 9, 289–295.

    Article  CAS  Google Scholar 

  19. Arya, S. K., Prusty, A. K., Singh, S. P., Solanki, P. R., Pandey, M. K., Datta, M., & Malhotra, B. D. (2007). Analytical Biochemistry, 363, 210–218.

    Article  CAS  Google Scholar 

  20. Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H. N., Singh, S. P., & Arora, K. (2013). Sensors and Actuators B: Chemical, 185, 675–684.

    Article  CAS  Google Scholar 

  21. Zhao, G., Xu, J., & Chen, H. (2006). Electrochemistry Communications, 8, 148–154.

    Article  CAS  Google Scholar 

  22. Yang, M., Yang, Y., Yang, H., Shen, G., & Yu, R. (2006). Biomaterials, 27, 246–255.

    Article  CAS  Google Scholar 

  23. Zhuang, Q., Hen, J., Chen, J., & Lin, X. (2008). Sensors and Actuators B: Chemical, 128, 500–506.

    Article  CAS  Google Scholar 

  24. Hu, G., Zhang, D., Wu, W., & Yang, Z. (2008). Colloids and Surfaces B: Biointerfaces, 62, 199–205.

    Article  CAS  Google Scholar 

  25. Liao, J. C., Mastali, M., Li, Y., Gau, V., Suchard, M. A., Babbitt, J., Gornbein, J., Landaw, E. M., McCabe, E. R. B., Churchill, B. M., & Haake, D. A. (2007). Journal of Molecular Diagnostics, 9, 158–168.

    Article  CAS  Google Scholar 

  26. Ulianas, A., Heng, L. Y., Lau, H. Y., Ishak, Z., & Ling, T. L. (2014). Analytical Methods, 6, 6369–6374.

    Article  CAS  Google Scholar 

  27. Siddiquee, S., Yusof, N. A., Salleh, A. B., Bakar, F. A., & Heng, L. Y. (2010). Bioelectrochemistry, 79, 31–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. R.C. Budhani, Director, National Physical Laboratory, India for the facilities. Maumita Das Mukherjee is thankful to Amity University, Noida for allowing her to perform the experiments. The financial support received at NPL, from Department of Science and Technology, India under the projects GAP 081132 and GAP 080232 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bansi D. Malhotra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, M.D., Solanki, P.R., Sumana, G. et al. Thiol Modified Chitosan Self-Assembled Monolayer Platform for Nucleic Acid Biosensor. Appl Biochem Biotechnol 174, 1201–1213 (2014). https://doi.org/10.1007/s12010-014-1177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1177-7

Keywords

Navigation