Skip to main content

Advertisement

Log in

Isolation and Characterization of Adipose-derived Mesenchymal Stem Cells (ADSCs) from Cattle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Adipose-derived mesenchymal stem cells (ADSCs) were isolated from the adult adipose tissue of 2-year-old cattle, and then characterized by immunofluorescence and RT-PCR. We found that primary bADSCs could be expanded for 25 passages. Expression of β-integrin, CD44, and CD73 was observed by immunofluorescence and RT-PCR. Passage 3 bADSCs were successfully induced to differentiate into osteoblasts and adipocytes. The results indicate the potential for multi-lineage differentiation of bADSCs that may represent an ideal candidate for cellular transplantation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baker, M. (2010). iPS cells: potent stuff. Nature Methods, 7, 17–19.

    Article  CAS  Google Scholar 

  2. Brown, W. R., Hubbard, S. J., Tickle, C., & Wilson, S. A. (2003). The chicken as a model for large-scale analysis of vertebrate gene function. Nature Reviews Genetics, 4, 87–98.

    Article  CAS  Google Scholar 

  3. Deliloglu-Gurhan, S. I., Vatansever, H. S., Ozdal-Kurt, F., & Tuglu, I. (2006). Characterization of osteoblasts derived from bone marrow stromal cells in a modified cell culture system. Acta Histochemica, 108, 49–57.

    Article  CAS  Google Scholar 

  4. Drost, A. C., Weng, S., Feil, G., Schafer, J., Baumann, S., Kanz, L., Sievert, K. D., Stenzl, A., & Mohle, R. (2009). In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Annals of the New York Academy of Sciences, 1176, 135–143.

    Article  CAS  Google Scholar 

  5. Feng, N., Han, Q., Li, J., Wang, S., Li, H., Yao, X., Zhao, R.C. (2013). Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem cells and development

  6. Gang, E. J., Hong, S. H., Jeong, J. A., Hwang, S. H., Kim, S. W., Yang, I. H., Ahn, C., Han, H., & Kim, H. (2004). In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 321, 102–108.

    Article  CAS  Google Scholar 

  7. Gao, Y. J., Qian, W., Wang, B. H., Lin, R., & Hou, X. H. (2006). Differentiation potential of bone marrow stromal cells to enteric neurons in vitro. Chinese Journal of Digestive Diseases, 7, 156–163.

    Article  CAS  Google Scholar 

  8. Gong, X., Hou, L., Bai, C., Jin, D., He, X., Guan, W., & Ma, Y. (2011). Isolation and biological characteristics of chicken adipose-derived progenitor cells. DNA and Cell Biology, 30, 453–460.

    Article  CAS  Google Scholar 

  9. Gonzalez-Cruz, R. D., Fonseca, V. C., & Darling, E. M. (2012). Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109, E1523–E1529.

    Article  CAS  Google Scholar 

  10. Hayashi, O., Katsube, Y., Hirose, M., Ohgushi, H., & Ito, H. (2008). Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcified Tissue International, 82, 238–247.

    Article  CAS  Google Scholar 

  11. Huang, Y., Dai, Z. Q., Ling, S. K., Zhang, H. Y., Wan, Y. M., & Li, Y. H. (2009). Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. Journal of Biomedical Science, 16, 87.

    Article  Google Scholar 

  12. Jing, W., Lin, Y., Wu, L., Li, X., Nie, X., Liu, L., Tang, W., Zheng, X., & Tian, W. (2007). Ectopic adipogenesis of preconditioned adipose-derived stromal cells in an alginate system. Cell and Tissue Research, 330, 567–572.

    Article  Google Scholar 

  13. Majumdar, M. K., Thiede, M. A., Mosca, J. D., Moorman, M., & Gerson, S. L. (1998). Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. Journal of Cellular Physiology, 176, 57–66.

    Article  CAS  Google Scholar 

  14. Meirelles Lda, S., & Nardi, N. B. (2003). Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. British Journal of Haematology, 123, 702–711.

    Article  Google Scholar 

  15. Naghdi, M., Tiraihi, T., Namin, S. A., & Arabkheradmand, J. (2009). Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy, 11, 137–152.

    Article  CAS  Google Scholar 

  16. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.

    Article  Google Scholar 

  17. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  Google Scholar 

  18. Qu, X., Liu, T., Song, K., Li, X., & Ge, D. (2012). Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. PloS One, 7, e48161.

    Article  CAS  Google Scholar 

  19. Rao, M. S., & Mattson, M. P. (2001). Stem cells and aging: expanding the possibilities. Mechanisms of Ageing and Development, 122, 713–734.

    Article  CAS  Google Scholar 

  20. Santa Maria, L., Rojas, C. V., & Minguell, J. J. (2004). Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. Experimental Cell Research, 300, 418–426.

    Article  CAS  Google Scholar 

  21. Schuetz, A., Nana, D., Rose, C., Zocher, G., Milanovic, M., Koenigsmann, J., Blasig, R., Heinemann, U., & Carstanjen, D. (2011). The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Cellular and Molecular Life Sciences: CMLS, 68, 3121–3131.

    Article  CAS  Google Scholar 

  22. Shafiee, A., Kabiri, M., Ahmadbeigi, N., Yazdani, S. O., Mojtahed, M., Amanpour, S., & Soleimani, M. (2011). Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells and Development, 20, 2077–2091.

    Article  CAS  Google Scholar 

  23. Shi, S., Bartold, P. M., Miura, M., Seo, B. M., Robey, P. G., & Gronthos, S. (2005). The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthodontics & Craniofacial Research, 8, 191–199.

    Article  CAS  Google Scholar 

  24. Tamama, K., Sen, C. K., & Wells, A. (2008). Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells and Development, 17, 897–908.

    Article  CAS  Google Scholar 

  25. Tashiro, K., Kondo, A., Kawabata, K., Sakurai, H., Sakurai, F., Yamanishi, K., Hayakawa, T., & Mizuguchi, H. (2009). Efficient osteoblast differentiation from mouse bone marrow stromal cells with polylysin-modified adenovirus vectors. Biochemical and Biophysical Research Communications, 379, 127–132.

    Article  CAS  Google Scholar 

  26. Yen, B. L., Huang, H. I., Chien, C. C., Jui, H. Y., Ko, B. S., Yao, M., Shun, C. T., Yen, M. L., Lee, M. C., & Chen, Y. C. (2005). Isolation of multipotent cells from human term placenta. Stem Cells, 23, 3–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the project National Infrastructure of Animal Germplasm Resources (2013) and Chinese Postdoctoral Science Foundation (2011 M500460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Guan.

Additional information

Taofeng Lu and Hui Xiong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Xiong, H., Wang, K. et al. Isolation and Characterization of Adipose-derived Mesenchymal Stem Cells (ADSCs) from Cattle. Appl Biochem Biotechnol 174, 719–728 (2014). https://doi.org/10.1007/s12010-014-1128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1128-3

Keywords

Navigation