Skip to main content

Advertisement

Log in

Additive manufacturing of polylactic acid-based nanofibers composites for innovative scaffolding applications

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Over the last four decades, additive manufacturing has established itself as a cost-effective, on-demand method for fabricating geometrically complicated structures. Tissue engineering has incited a lot of interest in recent years due to its enormous potential for repairing or replacing damaged tissues. In terms of mechanical and biological properties, creating scaffolds for tissue engineering remains a challenge. The current review concentrates on scaffold manufacturing of PLA nanofibers (NF)-based scaffolds as it is bioresorbable & biocompatible with human body, since they are one of the three most significant components in tissue engineering, along with seed cells, growth regulators, and scaffolds that could be helpful for novice researchers. In addition, the technological aspects of the electrospinning technique are employed to manufacture PLA NF in the case study, and fused filament fabrication (FFF) technology is used to build tensile specimens of PLA/PLA-NF composites. The results of the case study have been supported by tensile testing, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Figure8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Figure14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Prakash, K.S., Nancharaih, T., Rao, V.V.S.: sciencedirect additive manufacturing techniques in manufacturing—an overview. Mater. Today Proc. 5(2), 3873–3882 (2018). https://doi.org/10.1016/j.matpr.2017.11.642

    Article  Google Scholar 

  2. Tofail, S.A.M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21(1), 22–37 (2018). https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  3. DebRoy, T., et al.: Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  4. Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  5. Yan, X., Gu, P.: A review of rapid prototyping technologies and systems. CAD Comput. Aided Des. 28(4), 307–318 (1996). https://doi.org/10.1016/0010-4485(95)00035-6

    Article  Google Scholar 

  6. Singh, S., Ramakrishna, S., Singh, R.: Material issues in additive manufacturing: a review. J. Manuf. Process. 25, 185–200 (2017). https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  7. Gao, W., et al.: The status, challenges, and future of additive manufacturing in engineering. CAD Comput. Aided Des. 69, 65–89 (2015). https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  8. Qu, H.: Additive manufacturing for bone tissue engineering scaffolds. Mater. Today Commun. 24, 101024 (2020). https://doi.org/10.1016/j.mtcomm.2020.101024

    Article  Google Scholar 

  9. Jose, R.R., Rodriguez, M.J., Dixon, T.A., Omenetto, F., Kaplan, D.L.: Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater. Sci. Eng. 2(10), 1662–1678 (2016). https://doi.org/10.1021/acsbiomaterials.6b00088

    Article  Google Scholar 

  10. Vedadghavami, A., et al.: Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 62, 42–63 (2017). https://doi.org/10.1016/j.actbio.2017.07.028

    Article  Google Scholar 

  11. Henkel, J., et al.: Bone regeneration based on tissue engineering conceptions-A 21st century perspective. Bone Res. 1, 216–248 (2013). https://doi.org/10.4248/BR201303002

    Article  Google Scholar 

  12. Fomby, P., et al.: Stem cells and cell therapies in lung biology and diseases: conference report. Ann. Am. Thorac. Soc. 12(3), 181–204 (2010). https://doi.org/10.1002/term

    Article  Google Scholar 

  13. J. W. Haycock, Chapter 1 and techniques. 3D Cell Cult. Methods Protoc. Methods Mol. Biol. vol. 695, no. 2, pp. 1–15, (2011) https://doi.org/10.1007/978-1-60761-984-0.

  14. Melchels, F.P.W., Domingos, M.A.N., Klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W.: Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37(8), 1079–1104 (2012). https://doi.org/10.1016/J.PROGPOLYMSCI.2011.11.007

    Article  Google Scholar 

  15. A. D. S. To, Bioactive Peptide Nanofibers for Bone Tissue Regeneration. no. June, (2017).

  16. Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  Google Scholar 

  17. Marconi, S., et al.: Value of 3D printing for the comprehension of surgical anatomy. Surg. Endosc. 31(10), 4102–4110 (2017). https://doi.org/10.1007/s00464-017-5457-5

    Article  Google Scholar 

  18. Do, A.V., Khorsand, B., Geary, S.M., Salem, A.K.: 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv. Healthc. Mater. 4(12), 1742–1762 (2015). https://doi.org/10.1002/adhm.201500168

    Article  Google Scholar 

  19. Ashammakhi, N., et al.: Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio 1, 100008 (2019). https://doi.org/10.1016/j.mtbio.2019.100008

    Article  Google Scholar 

  20. Shahbazi, M., Jäger, H.: Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Appl. Bio Mater. 4(1), 325–369 (2021). https://doi.org/10.1021/acsabm.0c01379

    Article  Google Scholar 

  21. Williams, D., Thayer, P., Martinez, H., Gatenholm, E., Khademhosseini, A.: A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting 9, 19–36 (2018). https://doi.org/10.1016/j.bprint.2018.02.003

    Article  Google Scholar 

  22. Okamoto, M., John, B.: Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.001

    Article  Google Scholar 

  23. Roseti, L., et al.: Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng. C 78, 1246–1262 (2017). https://doi.org/10.1016/j.msec.2017.05.017

    Article  Google Scholar 

  24. Darie-Niță, R.N., Râpă, M., Frąckowiak, S.: special features of polyester-based materials for medical applications. Polymers (Basel) 14(5), 1–49 (2022). https://doi.org/10.3390/polym14050951

    Article  Google Scholar 

  25. Li, Y., et al.: The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regen. Biomater. 4(3), 179–190 (2017). https://doi.org/10.1093/rb/rbx009

    Article  Google Scholar 

  26. Sabir, M.I., Xu, X., Li, L.: A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44(21), 5713–5724 (2009). https://doi.org/10.1007/s10853-009-3770-7

    Article  Google Scholar 

  27. Sakhare, M.S., Rajput, H.H.: Polymer grafting and applications in pharmaceutical drug delivery systems—a brief review. Asian J. Pharm. Clin. Res. 10(6), 59–63 (2017). https://doi.org/10.22159/ajpcr.2017.v10i6.18072

    Article  Google Scholar 

  28. Lao, L.L., Venkatraman, S.S., Peppas, N.A.: Modeling of drug release from biodegradable polymer blends. Eur. J. Pharm. Biopharm. 70(3), 796–803 (2008). https://doi.org/10.1016/j.ejpb.2008.05.024

    Article  Google Scholar 

  29. Rokkanen, P.U., et al.: Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21(24), 2607–2613 (2000). https://doi.org/10.1016/S0142-9612(00)00128-9

    Article  Google Scholar 

  30. Murphy, W.L., McDevitt, T.C., Engler, A.J.: Materials as stem cell regulators. Nat. Mater. 13(6), 547–557 (2014). https://doi.org/10.1038/nmat3937

    Article  Google Scholar 

  31. Singh, N., Singh, R., Ahuja, I.P.S., Farina, I., Fraternali, F.: Metal matrix composite from recycled materials by using additive manufacturing assisted investment casting. Compos. Struct. 207, 129–135 (2019). https://doi.org/10.1016/j.compstruct.2018.09.072

    Article  Google Scholar 

  32. Capuana, E., Lopresti, F., Carfì Pavia, F., Brucato, V., La Carrubba, V.: Solution-based processing for scaffold fabrication in tissue engineering applications: a brief review. Polymers (Basel) (2021). https://doi.org/10.3390/polym13132041

    Article  Google Scholar 

  33. Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116(5), 2658–2667 (2010). https://doi.org/10.1002/app

    Article  Google Scholar 

  34. Perianes-Rodriguez, A., Waltman, L., van Eck, N.J.: Constructing bibliometric networks: a comparison between full and fractional counting. J. Informetr. 10(4), 1178–1195 (2016). https://doi.org/10.1016/j.joi.2016.10.006

    Article  Google Scholar 

  35. Vacanti, J.P., Langer, R.: Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet (1999). https://doi.org/10.1016/s0140-6736(99)90247-7

    Article  Google Scholar 

  36. N. Horzum, N. Arik, and Y. B. Truong, Nanofibers for fiber-reinforced composites. Elsevier Ltd, (2017), https://doi.org/10.1016/B978-0-08-101871-2.00012-6.

  37. Agarwal, S., Wendorff, J.H., Greiner, A.: Progress in the field of electrospinning for tissue engineering applications. Adv. Mater. 21(32–33), 3343–3351 (2009). https://doi.org/10.1002/adma.200803092

    Article  Google Scholar 

  38. Gonzales, R.R., Park, M.J., Tijing, L., Han, D.S., Phuntsho, S., Shon, H.K.: Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-by-layer polyelectrolyte deposition. Membranes (2018). https://doi.org/10.3390/membranes8030070

    Article  Google Scholar 

  39. Hasanzadeh, M., Mottaghitalab, V., Ansari, R., Radavi Moghadam, B., Haghi, A.K.: Issues in production of carbon nanotubes and related nanocomposites: a comprehensive review. Cellul. Chem. Technol. 49(3–4), 237–257 (2015)

    Google Scholar 

  40. Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007). https://doi.org/10.1016/j.msec.2006.05.019

    Article  Google Scholar 

  41. Martins, A., Reis, R.L., Neves, N.M.: Electrospinning: processing technique for tissue engineering scaffolding. Int. Mater. Rev. 53(5), 257–274 (2008). https://doi.org/10.1179/174328008X353547

    Article  Google Scholar 

  42. Rahmati, M., et al.: Electrospinning for tissue engineering applications. Prog. Mater. Sci. (2021). https://doi.org/10.1016/j.pmatsci.2020.100721

    Article  Google Scholar 

  43. Kim, J.E., Kim, S.H., Jung, Y.: Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng. Regen. Med. 13(6), 636–646 (2016). https://doi.org/10.1007/s13770-016-0125-8

    Article  Google Scholar 

  44. Caramella, C., et al.: Controlled delivery systems for tissue repair and regeneration. J. Drug Deliv. Sci. Technol. 32, 206–228 (2016). https://doi.org/10.1016/j.jddst.2015.05.015

    Article  Google Scholar 

  45. C. Republic, Synthetic polymer scaffolds for soft tissue engineering department of biological models, institute of macromolecular chemistry of the czech academy. vol. 67, (2018).

  46. Ekiert, M., Mlyniec, A., Uhl, T.: The influence of degradation on the viscosity and molecular mass of poly(lactide acid) biopolymer. Diagnostyka 16(4), 63–70 (2015)

    Google Scholar 

  47. Abdul Khalil, H.P.S., et al.: A review on micro- to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers (2020). https://doi.org/10.3390/POLYM12092043

    Article  Google Scholar 

  48. O’Brien, F.J.: Biomaterials & scaffolds for tissue engineering. Mater. Today 14(3), 88–95 (2011). https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  Google Scholar 

  49. Tan, X., Tan, Y.J.: 3D printing of metallic cellular scaffolds for bone implants. 3D 4D Print. Biomed. Appl (2018). https://doi.org/10.1002/9783527813704.ch12

    Article  Google Scholar 

  50. Shadjou, N., Hasanzadeh, M., Khalilzadeh, B.: Graphene based scaffolds on bone tissue engineering. Bioengineered 9(1), 38–47 (2018). https://doi.org/10.1080/21655979.2017.1373539

    Article  Google Scholar 

  51. Li, X., et al.: 3D-printed biopolymers for tissue engineering application. Int. J. Polym. Sci. (2014). https://doi.org/10.1155/2014/829145

    Article  Google Scholar 

  52. Mochane, M.J., Sefadi, J.S., Motsoeneng, T.S., Mokoena, T.E., Mofokeng, T.G., Mokhena, T.C.: The effect of filler localization on the properties of biopolymer blends, recent advances: a review. Polym. Compos. 41(7), 2958–2979 (2020). https://doi.org/10.1002/pc.25590

    Article  Google Scholar 

  53. P. Cite, T. H. E. Published, and R. Record, Fabricating poly ( lactic acid ) and poly ( lactic acid )/ poly ( caprolactone ) blend fibres via electrospinning by. (2019).

  54. Biomaterials and Applications, vol. 506. (2012). https://doi.org/10.1201/9781003049203-9.

  55. Neumann, I.A., Flores-Sahagun, T.H.S., Ribeiro, A.M.: Biodegradable poly (L-lactic acid) (PLLA) and PLLA-3-arm blend membranes: the use of PLLA-3-arm as a plasticizer. Polym. Test. 60, 84–93 (2017). https://doi.org/10.1016/j.polymertesting.2017.03.013

    Article  Google Scholar 

  56. Park, S.H., et al.: Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. J. Mater. Sci. Mater. Med. 23(11), 2671–2678 (2012). https://doi.org/10.1007/s10856-012-4738-8

    Article  Google Scholar 

  57. E. M. Elmowafy, M. Tiboni, and M. E. Soliman, Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles, vol. 49, no. 4. Springer Singapore, 2019. https://doi.org/10.1007/s40005-019-00439-x.

  58. Gentile, P., Chiono, V., Carmagnola, I., Hatton, P.V.: An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15(3), 3640–3659 (2014). https://doi.org/10.3390/ijms15033640

    Article  Google Scholar 

  59. Ghitman, J., Biru, E.I., Stan, R., Iovu, H.: Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108805

    Article  Google Scholar 

  60. S. K. I. H. Biomaterijala, (2011) Medicinska revija medical review of synthetic biomaterials. vol. 3, no. 1, pp. 51–56.

  61. Primavera, A., Novello, P.: Quantitative EEG findings in patients with subcortical vascular encephalopathy. Eur. Psychiatry 7(3), 121–127 (1992). https://doi.org/10.1017/s0924933800003059

    Article  Google Scholar 

  62. Abudula, T., Saeed, U., Memic, A., Gauthaman, K., Hussain, M.A., Al-Turaif, H.: Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering”. J. Polym. Res. (2019). https://doi.org/10.1007/s10965-019-1772-y

    Article  Google Scholar 

  63. Yin, G.B., Zhang, Y.Z., Wang, S.D., Shi, D.B., Dong, Z.H., Fu, W.G.: Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J. Biomed. Mater. Res. Part A 93(1), 158–163 (2010). https://doi.org/10.1002/jbm.a.32496

    Article  Google Scholar 

  64. Wang, W., et al.: 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos. Part B Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.109192

    Article  Google Scholar 

  65. Arastouei, M., Khodaei, M., Atyabi, S.M., Jafari Nodoushan, M.: The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering. Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102176

    Article  Google Scholar 

  66. Jammalamadaka, U., Tappa, K.: Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9(1), 2018 (2018). https://doi.org/10.3390/jfb9010022

    Article  Google Scholar 

  67. Li, X., et al.: Inkjet bioprinting of biomaterials. Chem. Rev. 120(19), 10793–10833 (2020). https://doi.org/10.1021/acs.chemrev.0c00008

    Article  Google Scholar 

  68. Xu, H., Zhang, Z., Xu, C.: Sedimentation study of bioink containing living cells. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5089245

    Article  Google Scholar 

  69. Liu, Z., Zhang, M., Bhandari, B., Wang, Y.: 3D printing: printing precision and application in food sector. Trends Food Sci. Technol. 69, 83–94 (2017). https://doi.org/10.1016/j.tifs.2017.08.018

    Article  Google Scholar 

  70. Lee Ventola, C.: Medical applications for 3D printing: current and projected uses. P T 39(10), 704–711 (2019)

    Google Scholar 

  71. Han, T., Kundu, S., Nag, A., Xu, Y.: 3D printed sensors for biomedical applications: a review. Sensors (Switzerland) (2019). https://doi.org/10.3390/s19071706

    Article  Google Scholar 

  72. Shaqour, B., et al.: Gaining a better understanding of the extrusion process in fused filament fabrication 3D printing: a review. Int. J. Adv. Manuf. Technol. 114(5–6), 1279–1291 (2021). https://doi.org/10.1007/s00170-021-06918-6

    Article  Google Scholar 

  73. Ozbolat, I.T., Hospodiuk, M.: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  Google Scholar 

  74. Triyono, J., Alfiansyah, R., Sukanto, H., Ariawan, D., Nugroho, Y.: Fabrication and characterization of porous bone scaffold of bovine hydroxyapatite-glycerin by 3D printing technology”. Bioprinting (2020). https://doi.org/10.1016/j.bprint.2020.e00078

    Article  Google Scholar 

  75. Gupta, S., Bissoyi, A., Bit, A.: A review on 3D printable techniques for tissue engineering. Bionanoscience 8(3), 868–883 (2018). https://doi.org/10.1007/s12668-018-0525-4

    Article  Google Scholar 

  76. Chen, G., Chen, N., Wang, Q.: Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos. Sci. Technol. 172, 17–28 (2019). https://doi.org/10.1016/j.compscitech.2019.01.004

    Article  Google Scholar 

  77. Zein, I., Hutmacher, D.W., Tan, K.C., Teoh, S.H.: Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169–1185 (2002). https://doi.org/10.1016/S0142-9612(01)00232-0

    Article  Google Scholar 

  78. Sano, Y., Matsuzaki, R., Ueda, M., Todoroki, A., Hirano, Y.: 3D printing of discontinuous and continuous fibre composites using stereolithography. Addit. Manuf. 24, 521–527 (2018). https://doi.org/10.1016/j.addma.2018.10.033

    Article  Google Scholar 

  79. Trhlíková, L., Zmeskal, O., Psencik, P., Florian, P.: Study of the thermal properties of filaments for 3D printing. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4955258

    Article  Google Scholar 

  80. Liu, X., Shao, W., Luo, M., Bian, J., Yu, D.G.: Electrospun blank nanocoating for improved sustained release profiles from medicated gliadin nanofibers. Nanomaterials (2018). https://doi.org/10.3390/nano8040184

    Article  Google Scholar 

  81. Hoque, M.E., et al.: Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J. Biomater. Sci. Polym. Ed. 16(12), 1595–1610 (2005). https://doi.org/10.1163/156856205774576709

    Article  Google Scholar 

  82. Stout, D.A., Basu, B., Webster, T.J.: Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater. 7(8), 3101–3112 (2011). https://doi.org/10.1016/j.actbio.2011.04.028

    Article  Google Scholar 

  83. Sadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., Chen, X.: Electrospinning of scaffolds from the polycaprolactone/polyurethane composite with graphene oxide for skin tissue engineering. Appl. Biochem. Biotechnol. (2020). https://doi.org/10.1007/s12010-019-03192-x

    Article  Google Scholar 

  84. Jiang, D., Ning, F., Wang, Y.: Additive manufacturing of biodegradable iron-based particle reinforced polylactic acid composite scaffolds for tissue engineering. J. Mater. Process. Technol. (2020). https://doi.org/10.1016/j.jmatprotec.2020.116952

    Article  Google Scholar 

  85. Wibowo, A., et al.: 3D printing of polycaprolactone—polyaniline electroactive scaffolds for bone tissue engineering. Materials (2020). https://doi.org/10.3390/ma13030512

    Article  Google Scholar 

  86. Jiao, Z., Luo, B., Xiang, S., Ma, H., Yu, Y., Yang, W.: 3D printing of HA / PCL composite tissue engineering scaffolds. Adv. Ind. Eng. Polym. Res. 2(4), 196–202 (2019). https://doi.org/10.1016/j.aiepr.2019.09.003

    Article  Google Scholar 

  87. Manzoor, F., et al.: 3D printed PEEK/HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential. J. Mech. Behav. Biomed. Mater. (2021). https://doi.org/10.1016/j.jmbbm.2021.104601

    Article  Google Scholar 

  88. Kim, M., Kim, G.: Electrospun PCL/phlorotannin nanofibres for tissue engineering: physical properties and cellular activities. Carbohydr. Polym. 90(1), 592–601 (2012). https://doi.org/10.1016/j.carbpol.2012.05.082

    Article  MathSciNet  Google Scholar 

  89. N. Maurmann et al., Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices , coated with PLGA electrospun nanofibers for use in tissue engineering Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices , coated with PLGA el.

  90. DeChen, R., Huang, C.F., hui Hsu, S.: Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2019.02.025

    Article  Google Scholar 

  91. Tardajos, M.G., et al.: Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr. Polym. 191, 127–135 (2018). https://doi.org/10.1016/j.carbpol.2018.02.060

    Article  Google Scholar 

  92. Ngadiman, N.H.A., Yusof, N.M., Idris, A., Fallahiarezoudar, E., Kurniawan, D.: Novel processing technique to produce three dimensional polyvinyl alcohol/maghemite nanofiber scaffold suitable for hard tissues. Polymers (Basel) (2018). https://doi.org/10.3390/polym10040353

    Article  Google Scholar 

  93. Chen, Y.P., Lo, T.S., Lin, Y.T., Chien, Y.H., Lu, C.J., Liu, S.J.: Fabrication of drug-eluting polycaprolactone/ poly (Lactic-co-glycolic acid) prolapse mats using solution-extrusion 3d printing and coaxial electrospinning techniques. Polymers (Basel). (2021). https://doi.org/10.3390/polym13142295

    Article  Google Scholar 

  94. De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., De Clerck, K.: The effect of temperature and humidity on electrospinning. J. Mater. Sci. 44(5), 1357–1362 (2009). https://doi.org/10.1007/s10853-008-3010-6

    Article  Google Scholar 

  95. Casasola, R., Thomas, N.L., Trybala, A., Georgiadou, S.: Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer (Guildf) 55(18), 4728–4737 (2014). https://doi.org/10.1016/j.polymer.2014.06.032

    Article  Google Scholar 

  96. Singh, B., et al.: Investigations on melt flow rate and tensile behaviour of single, double and triple-sized copper reinforced thermoplastic composites. Materials (Basel). (2021). https://doi.org/10.3390/ma14133504

    Article  Google Scholar 

  97. K. Torres-Rivero, J. Bastos-Arrieta, N. Fiol, and A. Florido, Metal and metal oxide nanoparticles: an integrated perspective of the green synthesis methods by natural products and waste valorization: applications and challenges, 1st ed., vol. 94. Elsevier B.V., 2021. doi: https://doi.org/10.1016/bs.coac.2020.12.001.

Download references

Acknowledgements

Authors like to thanks Indian Institute of Technology Bombay and Guru Nanak Dev Engineering College Ludhiana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranvijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, K., Kumar, R., Singh, G. et al. Additive manufacturing of polylactic acid-based nanofibers composites for innovative scaffolding applications. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01435-0

Keywords

Navigation