Skip to main content
Log in

Abstract

Modern electronic devices include faster processing times and greater compactness. Heat generation rises as a result of miniaturization and higher power density. The working temperature of electronic components increases beyond their critical limits as a result of increased heat generation. Higher temperatures cause the components to perform poorly and occasionally fail. In order to avoid failures and maintain the long-term dependability of electronic devices, an effective cooling technique is required. One potential solution for this is to use microchannel heat sinks to reduce the temperature of integrated chips (ICs). To get the best design, it is crucial to do thermal analyses on various channel layouts and their cross sections and compare how they operate. In this study, a microchannel heat sink’s effectiveness at dissipating heat was examined with respect to its hydraulic diameter, surface area and number of channels using the commercial computational fluid dynamics (CFD) software ANSYS Fluent. Numerical analysis of four alternative 3D heat sinks employing water as a coolant was performed. A laminar and incompressible fluid model was used to conduct steady-state analysis. The simulations were carried out with boundary conditions of a constant mass flow rate of 0.00623875 kg/s and a constant flux of 143,000 W/m2 for all the models. The results of the study showed that the surface temperature decreased with an increase in cross-sectional area, number of channels and hydraulic diameter from 361 K for a simple rectangular model to 332 K, 326 K, and 324 K for a 5-channel fin, 8-channel fin and 11-channel fin model, respectively. The 8-channel fin model was found to have the best overall heat transfer coefficient compared with the other models, with an increase of 188% above the basic rectangular model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

IC:

Integrated chip

CFD:

Computational fluid dynamics

h:

Convective heat transfer coefficient [W/m2 K]

k:

Thermal conductivity [W/m K]

P:

Pressure [Pa]

ΔP:

Pressure drop [Pa]

q:

Heat flux [W/m2]

Re:

Reynolds number

T:

Temperature

V:

Velocity [m/s]

μ:

Viscosity [kg/m s]

ρ:

Density [kg/m3]

TiO2 :

Titanium oxide

Al2O3 :

Aluminium oxide

CuO:

Copper oxide

CAD:

Computer aided design

t:

Time

u:

Flow velocity vector field

References

  1. Ravigururajan, T.S.: Impact of channel geometry on two-phase flow heat transfer characteristics of refrigerants in micro- channel heat exchangers. J. Heat Transf. 120, 485–491 (1998)

    Article  Google Scholar 

  2. Hasana, M.I., Rageba, A.A., Yaghoubib, M., Homayoni, H.: Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. Int. J. Therm. Sci. 48, 1607–1618 (2009)

    Article  Google Scholar 

  3. Huang, L., Aute, V., Radermacher, R.: Design optimization of variable geometry micro channel heat exchangers, In: 15th International Refrigeration and Air Conditioning Conference at Purdue University, Indiana, July14–17, (2014)

  4. Zhang, Y., Pan, M.: Impact of N-structure geometry on heat transfer in a microchannel heat exchanger. Chem. Eng. Technol. 44, 690–697 (2021)

    Article  Google Scholar 

  5. Goncalves, I.M., Rocha, C., Souza, R.R., Coutinho, G., Pereira, J.E., Moita, A.S., Moreira, A.L.N., Lima, R., Miranda, J.M.: Numerical optimization of a microchannel geometry for nanofluid film and heat dissipation assessment. Appl. Sci. 11, 2440 (2021)

    Article  Google Scholar 

  6. Meral, Z.K., Parlak, N.: Experimental research and CFD simulation of cross flow microchannel heat exchanger. J. Therm. Eng. 7, 270–283 (2021)

    Article  Google Scholar 

  7. Afrouzi, H.H., Moshfegh, A., Farhadi, M., Sedighi, K.: Dissipative particle dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale. Transp. Phenom. Nano Micro Scales. 5(1), 44–53 (2016)

    Google Scholar 

  8. Akbari, O.A., Afrouzi, H.H., Marzban, A., Toghraie, D., Malekzade, H., Arabpour, A.: Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J. Therm. Anal. Calorim. 129(3), 1911–1922 (2017)

    Article  Google Scholar 

  9. Afrouzi, H.H., Darzi, A.A.R., Delavar, M.A., Mehrizi, A.A.: Pulsating flow and heat transfer in a helical tube with constant heat flux. Int. J. Adv. Ind. Eng. 1(2), 36–39 (2013)

    Google Scholar 

  10. Mehrizi, A.A., Sedighi, K., Afrouzi, H.H., Aghili, A.L.: Lattice Boltz-mann simulation of forced convection in vented cavity filled by porous medium with obstruction. World Appl. Sci. J. 16, 31–36 (2012)

    Google Scholar 

  11. Akbari, O.A., Karimipour, A., Toghraie, D., Safaei, M.R., Alipour Goodarzi, M.H., Dahari, M.: Investigation of Rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two-dimensional ribmicrochannel. Appl. Math. Comput. 290, 135–153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rezaei, O., Akbari, O.A., Marzban, A., Toghraie, D., Pourfattah, F., Mashayekhi, R.: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Phys. E 93, 179–189 (2017)

    Article  Google Scholar 

  13. Heydari, A., Akbari, O.A., Safaei, M.R., Derakhshani, M., Alrashed, A., Mashayekhi, R., Ahmadi Sheikh Shabani, G.H.R., Zarring-halam, M., Nguyen, T.K.: The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J. Therm. Anal. Calorim. (2017). https://doi.org/10.1007/s10973-017-6746-x

    Article  Google Scholar 

  14. Hung, T.C., Yan, W.M., Li, W.P.: Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int. J. Heat Mass Transf. 55, 3090–3099 (2012)

    Article  Google Scholar 

  15. Hung, T.C., Yan, W.M.: Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids. Int. J. Heat Mass Transf. 55, 3225–3238 (2012)

    Article  Google Scholar 

  16. Hung, T.C., Yan, W.M., Wang, X.D., Huang, Y.X.: Optimal design of geometric parameters of double-layered microchannel heat sinks. Int. J. Heat Mass Transf. 55, 3262–3272 (2012)

    Article  Google Scholar 

  17. Wong, K.C., Muezzin, F.N.A.: Heat transfer of a parallel flow two- layered microchannel heat sink. Int. Commun. Heat Mass Transf. 49, 136–140 (2013)

    Article  Google Scholar 

  18. Varun Kumar, N.P., Sunil, S.,Prabhakar Reddy, C.: Experimental investigations on a compact heat exchanger and optimization using Taguchi technique, Int. J. Res. Eng. Technol.05(06) (2016)

  19. Sunil, S., Basavaraj, H.T.: Evaluation of convective heat transfer coefficient of air flowing through an inclined square duct, Int. J. Eng. Res. Technol. 4(02), (2015)

  20. Devendra Reddy, M., Sunil, S., Chandra Prasad, B.S., Kakkeri, S.: Studies on alternative hybrid materials for replacement of R134a in space heating process. Mater. Today Proc. 44(1), 716–721 (2021)

    Article  Google Scholar 

  21. Kamsuwana, C., Wang, X.: Simulation of nanofluid micro-channel heat exchanger using computational fluid dynamics integrated with artificial neural network. Energy Rep. 9, 239–247 (2023)

    Article  Google Scholar 

  22. Freegah, B., Hussain, A.A., Falih, A.H., Towsyfyan, H.: CFD analysis of heat transfer enhancement in plate-fin heat sinks with fillet profile: investigation of new designs. Therm. Sci. Eng. Prog. (2019)

  23. Akbari, O.A., Toghraie, D., Karimipour, A.: Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi-attached rib. Adv. Mech. Eng. 8(4), 1–25 (2016)

    Article  Google Scholar 

  24. Gururatana, S.: Numerical simulation of micro-channel heat sink with dimpled surfaces. Am. J. Appl. Sci. 9(3), 399–404 (2012)

    Article  Google Scholar 

  25. Elnaggar, M.H.A.: Heat transfer enhancement by heat sink fin arrangement in electronic cooling, J. Multidiscip. Eng. Sci. Technol. (JMEST), 2(3), (2015)

  26. Hussain, A.A., Freegah, B., Khalaf, B.S., Towsyfyan, H.: Numerical investigation of heat transfer enhancement in plate-fin heat sinks: effect of flow direction and fillet profile. Case Stud. Therm. Eng. 13, 100388 (2019)

    Article  Google Scholar 

  27. Vasudev, H., Prakash, C.: Surface engineering and performance of biomaterials: editorial. J. Electrochem. Sci. Eng. 13(1), 1–3 (2023)

    Article  Google Scholar 

  28. Mehta, A., Singh, G.: Consequences of hydroxyapatite doping using plasma spray to implant biomaterials: review paper. J. Electrochem. Sci. Eng. 13(1), 5–23 (2023)

    Article  Google Scholar 

  29. Singh, J., Singh, J.P., Kumar, S., Gill, H.S.: Short review on hydroxyapatite powder coating for SS 316L: review paper. J. Electrochem. Sci. Eng. 13(1), 25–39 (2023)

    Article  Google Scholar 

  30. Singh, H., Singh, S., Prakash, C.: Current trends in biomaterials and bio-manufacturing, Biomanufacturing 1–34 (2019)

  31. Prashar, G., Vasudev, H.: Understanding cold spray technology for hydroxyapatite deposition: review paper. J. Electrochem. Sci. Eng. 13(1), 41–62 (2023)

    Article  Google Scholar 

  32. Singh, J., Singh, S., Gill, R.: Applications of biopolymer coatings in biomedical engineering: review paper. J. Electrochem. Sci. Eng. 13(1), 63–81 (2022)

    Google Scholar 

  33. Singh, J., Singh, S., Verma, A.: Artificial intelligence in use of ZrO2 material in biomedical science: review paper. J. Electrochem. Sci. Eng. 13(1), 83–97 (2022)

    Google Scholar 

  34. Uddin, M., Basak, A., Pramanik, A., Singh, S., Krolczyk, G.M., Prakash, C.: Evaluating hole quality in drilling of Al 6061 alloys. Materials 11, 2443 (2018)

    Article  Google Scholar 

  35. Singh, G., Singh, R., Gul, J.: Machinability behavior of human implant materials: Original scientific paper. J. Electrochem. Sci. Eng. 13(1), 99–114 (2022)

    Google Scholar 

  36. Abdulaah, H.A., Al-Ghaban, A.M., Anaee, R.A., Khadom, A.A., Kadhim, M.M.: Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: experimental, biological, theoretical, and electrochemical investigations: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 115–126 (2022)

    Google Scholar 

  37. Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments—a review. Int. J. Adv. Manuf. Technol. 107, 2189–2210 (2020)

    Article  Google Scholar 

  38. Jawade, S., Kakandikar, G.: Relationship modelling for surface finish for laser-based additive manufacturing: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 127–135 (2023)

    Google Scholar 

  39. Kundu, S., Thakur, L.: Microhardness and biological behavior of AZ91D-nHAp surface composite for bio-implants: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 137–147 (2022)

    Google Scholar 

  40. Poojari, M., Hanumanthappa, H., Durga Prasad, C., Jathanna, H.M., Ksheerasagar, A.R., Shetty, P., Shanmugam, B.K., Vasudev, H.: Computational modelling for the manufacturing of solar-powered multifunctional agricultural robot. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01291-y

    Article  Google Scholar 

  41. Manjunatha, C.J., Durga Prasad, C., Hanumanthappa, H., Rajesh Kannan, A., Mohan, D.G., Shanmugam, B.K., Venkategowda, C.: Influence of microstructural characteristics on wear and corrosion behaviour of Si3N4 reinforced Al2219 composites. Adv. Mater. Sci. Eng. 2023, 1120569 (2023). https://doi.org/10.1155/2023/1120569

    Article  Google Scholar 

  42. Sharanabasva, H., Durga Prasad, C., Ramesh, M.R.: Characterization and wear behavior of NiCrMoSi microwave cladding. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-07998-z

    Article  Google Scholar 

  43. Yedida, V.V.S., Vasudev, H.: Mechanical and microstructural characterization of YSZ/Al2O3/CeO2 plasma sprayed coatings: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 163–172 (2022)

    Google Scholar 

  44. Kumar, R., Ranjan, N., Kumar, V., Kumar, R., Chohan, J.S., Yadav, A., Sharma, S., Prakash, C., Singh, S., Li, C.: Characterization of friction stir-welded polylactic acid/aluminum composite primed through fused filament fabrication, J. Mater. Eng. Perform. 1–19 (2021)

  45. Sharanabasva, H., Durga Prasad, C., Ramesh, M.R.: Effect of Mo and SiC reinforced NiCr microwave cladding on microstructure, mechanical and wear properties. J. Inst. Eng. (India) Ser. D (2023). https://doi.org/10.1007/s40033-022-00445-8

    Article  Google Scholar 

  46. Pandey, A., Singh, G., Singh, S., Jha, K., Prakash, C.: 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings. J. Mech. Behav. Biomed. Mater. 108, 103781 (2020)

    Article  Google Scholar 

  47. Raghavan, V., Rajasekaran, S.J.: Corrigendum to Palmyra palm flower biomass-derived activated porous carbon and its application as a supercapacitor electrode: corrigendum. J. Electrochem. Sci. Eng. 13(1), 215 (2023)

    Article  Google Scholar 

  48. Singh, S., Singh, N., Gupta, M., Prakash, C., Singh, R.: Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer. Rapid Prototyp. J. 25, 152–161 (2019)

    Article  Google Scholar 

  49. Nithin, H.S., Nishchitha, K.M., Pradeep, D.G., Durga Prasad, C., Mathapati, M.: Comparative analysis of CoCrAlY coatings at high temperature oxidation behavior using different reinforcement composition profiles. Weld. World 67, 585–592 (2023). https://doi.org/10.1007/s40194-022-01405-2

    Article  Google Scholar 

  50. Naveen, D.C., Kakur, N., Keerthi Gowda, B.S., Madhu Sudana Reddy, G., Durga Prasad, C., Shanmugam, R.: Effects of polypropylene waste addition as coarse aggregate in concrete: experimental characterization and statistical analysis. Adv. Mater. Sci. Eng. 2022, 7886722 (2022). https://doi.org/10.1155/2022/7886722

    Article  Google Scholar 

  51. Prakash, C., Singh, S., Ramakrishna, S., Królczyk, G., Le, C.H.: Microwave sintering of porous Ti–Nb–HA composite with high strength and enhanced bioactivity for implant applications. J. Alloy. Compd. 824, 153774 (2020)

    Article  Google Scholar 

  52. Singh, M., Vasudev, H., Singh, M.: Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique: original scientific paper. J. Electrochem. Sci. Eng. 12(5), 851–863 (2022)

    Google Scholar 

  53. Kumar, A., Grover, N., Manna, A., Chohan, J.S., Kumar, R., Singh, S., Prakash, C., Pruncu, C.I.: Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Ad. Compos. Lett. 29, 2633366X20963137 (2020)

    Google Scholar 

  54. Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., Pruncu, C.I.: Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) Alloy. Materials. 14, 2292 (2021)

    Article  Google Scholar 

  55. Gowda, V., Hanumanthappa, H., Shanmugam, B.K., Durga Prasad, C., Sreenivasa, T.N., Rajendra Kumar, M.S.: High-temperature tribological studies on hot forged Al6061- Tib2 in-situ composites. J. Bio Tribo-Corros. 8, 101 (2022). https://doi.org/10.1007/s40735-022-00699-5

    Article  Google Scholar 

  56. Madhusudana Reddy, G., Durga Prasad, C., Patil, P., Kakur, N., Ramesh, M.R.: Elevated temperature erosion performance of plasma sprayed NiCrAlY/TiO2 coating on MDN 420 steel substrate. Surf. Topogr. Metrol. Prop. 10, 025010 (2022). https://doi.org/10.1088/2051-672X/ac6a6e

    Article  Google Scholar 

  57. Madhusudana Reddy, G., Durga Prasad, C., Shetty, G., Ramesh, M.R., Nageswara Rao, T., Patil, P.: Investigation of thermally sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermet composite coatings on titanium alloys. Eng. Res. Express 4, 025049 (2022). https://doi.org/10.1088/2631-8695/ac7946

    Article  Google Scholar 

  58. Madhusudana Reddy, G., Durga Prasad, C., Shetty, G., Ramesh, M.R., Nageswara Rao, T., Patil, P.: High temperature oxidation behavior of plasma sprayed NiCrAlY/TiO2 and NiCrAlY /Cr2O3/YSZ coatings on titanium alloy. Weld. World (2022). https://doi.org/10.1007/s40194-022-01268-7

    Article  Google Scholar 

  59. Naik, T., Mathapathi, M., Durga Prasad, C., Nithin, H.S., Ramesh, M.R.: Effect of laser post treatment on microstructural and sliding wear behavior of HVOF sprayed NiCrC and NiCrSi coatings. Surf. Rev. Lett. 29(1), 225000 (2022). https://doi.org/10.1142/S0218625X2250007X

    Article  Google Scholar 

  60. Madhusudana Reddy, G., Durga Prasad, C., Shetty, G., Ramesh, M.R., Nageswara Rao, T., Patil, P.: High temperature oxidation studies of plasma sprayed NiCrAlY/TiO2 and NiCrAlY /Cr2O3/YSZ cermet composite coatings on MDN-420 special steel alloy. Metallogr. Microstruct. Anal. 10, 642–651 (2021). https://doi.org/10.1007/s13632-021-00784-0

    Article  Google Scholar 

  61. Mathapati, M., Amate, K., Durga Prasad, C., Jayavardhana, M.L., Hemanth Raju, T.: A review on fly ash utilization. Mater. Today Proc. 50(5), 1535–1540 (2022). https://doi.org/10.1016/j.matpr.2021.09.106

    Article  Google Scholar 

  62. Dinesh, R., Rohan Raykar, S., Rakesh, T.L., Prajwal, M.G., Shashank Lingappa, M., Durga Prasad, C.: Feasibility study on MoCoCrSi/ WC-Co cladding developed on austenitic stainless steel using microwave hybrid heating. J. Mines Metals Fuels (2021). https://doi.org/10.18311/jmmf/2021/30113

    Article  Google Scholar 

  63. Durga Prasad, C., Lingappa, S., Joladarashi, S., Ramesh, M.R., Sachin, B.: Characterization and sliding wear behavior of CoMoCrSi+Flyash composite cladding processed by microwave irradiation. Mater. Today Proc. 46, 2387–2391 (2021). https://doi.org/10.1016/j.matpr.2021.01.156

    Article  Google Scholar 

  64. Madhu, G., Swamy, K.M.M., Kumar, D.A., Durga Prasad, C., Harish, U.: Evaluation of hot corrosion behavior of HVOF thermally sprayed Cr3C2-35NiCr coating on SS 304 boiler tube steel. Am. Inst. Phys. 2316, 030014 (2021). https://doi.org/10.1063/5.0038279

    Article  Google Scholar 

  65. Reddy, M.S., Durga Prasad, C., Patil, P., Ramesh, M.R., Rao, N.: Hot corrosion behavior of plasma sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel. Surf. Interfaces 22, 100810 (2021). https://doi.org/10.1016/j.surfin.2020.100810

    Article  Google Scholar 

  66. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S.: Microstructure and tribological resistance of flame sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co composite coatings remelted by microwave hybrid heating. J. Bio Tribo-Corros. 6, 124 (2020). https://doi.org/10.1007/s40735-020-00421-3

    Article  Google Scholar 

  67. Durga Prasad, C., Joladarashi, S., Ramesh, M.R.: Comparative investigation of HVOF and flame sprayed CoMoCrSi coating. Am. Inst. Phys. 2247, 050004 (2020). https://doi.org/10.1063/5.0003883

    Article  Google Scholar 

  68. Durga Prasad, C., Jerri, A., Ramesh, M.R.: Characterization and sliding wear behavior of iron based metallic coating deposited by HVOF process on low carbon steel substrate. J. Bio Tribo-Corros. 6, 69 (2020). https://doi.org/10.1007/s40735-020-00366-7

    Article  Google Scholar 

  69. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Comparison of high temperature wear behavior of microwave assisted HVOF sprayed CoMoCrSi-WC-CrC-Ni/WC-12Co composite coatings. SILICON 12, 3027–3045 (2020). https://doi.org/10.1007/s12633-020-00398-1

    Article  Google Scholar 

  70. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr3C2 composite coating. Surf. Coat. Technol. 374, 291–304 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.056

    Article  Google Scholar 

  71. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Development and sliding wear behavior of Co–Mo–Cr–Si cladding through microwave heating. SILICON 11, 2975–2986 (2019). https://doi.org/10.1007/s12633-019-0084-5

    Article  Google Scholar 

  72. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Microstructure and tribological behavior of flame sprayed and microwave fused CoMoCrSi/CoMoCrSi-Cr3C2 coatings. Mater. Res. Express 6, 026512 (2019). https://doi.org/10.1088/2053-1591/aaebd9

    Article  Google Scholar 

  73. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating. Mater. Res. Express 5, 086519 (2018). https://doi.org/10.1088/2053-1591/aad44e

    Article  Google Scholar 

  74. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Sarkar, A.: High temperature gradient cobalt based clad developed using microwave hybrid heating. Am. Inst. Phys. 1943, 020111 (2018). https://doi.org/10.1063/1.5029687

    Article  Google Scholar 

  75. Girisha, K.G., Sreenivas Rao, K.V., Durga Prasad, C.: Slurry erosion resistance of martenistic stainless steel with plasma sprayed Al2O3–40%TiO2 coatings. Mater. Today Proc. 5, 7388–7393 (2018). https://doi.org/10.1016/j.matpr.2017.11.409

    Article  Google Scholar 

  76. Girisha, K.G., Durga Prasad, C., Anil, K.C., Sreenivas Rao, K.V.: Dry sliding wear behaviour of Al2O3 coatings for AISI 410 grade stainless steel. Appl. Mech. Mater. 766–767, 585–589 (2015). https://doi.org/10.4028/www.scientific.net/AMM.766-767.585

    Article  Google Scholar 

  77. Girisha, K.G., Rakesh, R., Durga Prasad, C., Sreenivas Rao, K.V.: Development of corrosion resistance coating for AISI 410 grade steel. Appl. Mech. Mater. 813–814, 135–139 (2015). https://doi.org/10.4028/www.scientific.net/AMM.813-814.135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Durga Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjaneya, G., Sunil, S., Kakkeri, S. et al. Numerical simulation of microchannel heat exchanger using CFD. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01376-8

Keywords

Navigation