Skip to main content

Advertisement

Log in

Coronary stent fracture and application of interactive design: a narrative review

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Stents are usually used as an implant in the human bodies for the treatment of blocked coronary arteries, and hence supporting them. Stents have become a highly viable option in the present times for such treatments. While the use of stents has proved to be highly beneficial for such purposes, there are also concerns associated with the incidences of fractures in the structures, particularly after being implanted in human body. Such fractures of stents not only make the structure ineffective for treatment, but also impact the human health. The objective of this review has been focused on understanding the stents fracture, based on a failure analysis approach, and hence to realize the ideal properties of stent, the contribution of corrosion and fatigues to stent fractures, and overall role of fracture mechanics. Towards that, computer interactive design criteria, and simulation-based performance analysis was also taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All the data are available in public domain in respective references.

References

  1. Iqbal, J., Gunn, J., Serruys, P.W.: Coronary stents: historical development, current status and future directions. Br. Med. Bull. 106(1), 193–211 (2013)

    Article  Google Scholar 

  2. Shan, W.: Fatigue, Fracture of Small Structures. Princeton University (2012)

    Google Scholar 

  3. Robertson, S.W.: On the Mechanical Properties and Microstructure of Nitinol Forbiomedical Stent Applications. Lawrence Berkeley National Lab. (LBNL), Berkeley (2006)

    Book  Google Scholar 

  4. Laslett, L.J., et al.: The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J. Am. Coll. Cardiol. 60(25S), S1–S49 (2012)

    Article  Google Scholar 

  5. Nebeker, J.R., et al.: Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J. Am. Coll. Cardiol. 47(1), 175–181 (2006)

    Article  Google Scholar 

  6. Teirstein, P.S., Lytle, B.W.: Interventional and surgical treatment of coronary artery disease. In: Goldman’s Cecil Medicine, pp. 448–453. Elsevier (2012)

    Chapter  Google Scholar 

  7. White, C.J.: Atherosclerotic peripheral arterial disease (2011)

  8. McKelvey, A., Ritchie, R.: Fatigue-crack growth behavior in the superelastic and shape-memory alloy Nitinol. Metall. Mater. Trans. A 32(3), 731–743 (2001)

    Article  Google Scholar 

  9. Handler, C., Cleman, M.: Classic Papers in Coronary Angioplasty. Springer (2006)

    Book  Google Scholar 

  10. Chinikar, M., Sadeghipour, P.: Coronary stent fracture: a recently appreciated phenomenon with clinical relevance. Curr. Cardiol. Rev. 10(4), 349–354 (2014)

    Article  Google Scholar 

  11. Nair, R.N., Quadros, K.: Coronary stent fracture: a review of the literature. Cardiac Cath Lab Dir. 1(1), 32–38 (2011)

    Article  Google Scholar 

  12. Hetterich, H., Rieber, J.: Multiple stent fractures at the site of coronary artery bypass insertion. Catheter. Cardiovasc. Interv. 73(1), 84–87 (2009)

    Article  Google Scholar 

  13. Jovicic, G.R., Vukicevic, A.M., Filipovic, N.D.: Computational assessment of stent durability using fatigue to fracture approach. J. Med. Devices 8, 4 (2014). https://doi.org/10.1115/1.4027687

    Article  Google Scholar 

  14. Lee, S.-H., et al.: Frequency of stent fracture as a cause of coronary restenosis after sirolimus-eluting stent implantation. Am. J. Cardiol. 100(4), 627–630 (2007)

    Article  Google Scholar 

  15. Pelton, A., et al.: Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1(2), 153–164 (2008)

    Article  Google Scholar 

  16. Duerig, T., Tolomeo, D., Wholey, M.: An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 9(3–4), 235–246 (2000)

    Article  Google Scholar 

  17. Halkin, A., Carlier, S., Leon, M.: Late incomplete lesion coverage following Cypher stent deployment for diffuse right coronary artery stenosis. Heart 90(8), e45–e45 (2004)

    Article  Google Scholar 

  18. Min, P.-K., Yoon, Y.-W., Kwon, H.M.: Delayed strut fracture of sirolimus-eluting stent: a significant problem or an occasional observation? Int. J. Cardiol. 106(3), 404–406 (2006)

    Article  Google Scholar 

  19. Robertson, S.W., Ritchie, R.O.: In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4), 700–709 (2007)

    Article  Google Scholar 

  20. Iwasaki, K., et al.: Flexibility and stent fracture potentials against cyclically bending coronary artery motions: comparison between 2-link and 3-link DESs. Am. J. Cardiol. 111(7), 26B (2013)

    Article  Google Scholar 

  21. Dieter, G.E.: Mechanical Metallurgy. Mc Graw Hill Book, New York (1988), (1986)

  22. Frotscher, M., et al.: A new approach for fatigue-to-fracture testing of coronary stents. In: Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices. ASTM International (2019)

  23. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws (1963)

  24. Hertzberg, R.W., Herman, W.A., Ritchie, R.O.: Use of a constant Kmax test procedure to predict small crack growth behavior in 2090-T8E41 aluminum–lithium alloy. Scr. Metall. 21(11), 1541–1546 (1987)

    Article  Google Scholar 

  25. Kruzic, J., Ritchie, R.: Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin. J. Biomed. Mater. Res. Part A 79(3), 747–751 (2006)

    Article  Google Scholar 

  26. Marrey, R.V., et al.: Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9), 1988–2000 (2006)

    Article  Google Scholar 

  27. Basak, A., et al.: Tribocorrosion behaviour of nano-structured coatings for automotive application. In: Proc. Eurocorr 2005. The European Corrosion Congress (2005)

  28. Basak, A., et al.: Chemical reactivity of thermo-hardenable steel weld joints investigated by electrochemical impedance spectroscopy. Electrochim. Acta 53(25), 7575–7582 (2008)

    Article  Google Scholar 

  29. Yuyama, S.: Fundamental aspects of acoustic emission applications to the problems caused by corrosion. In: Corrosion monitoring in industrial plants using nondestructive testing and electrochemical methods. ASTM International (1986)

  30. Mohammed Khalil, M., Awad, A., Jassim, A.S.: Stent fracture: how frequently is it recognized? (2013)

  31. Basak, A., et al.: Corrosion–wear behaviour of thermal sprayed nanostructured FeCu/WC–Co coatings. Wear 261(9), 1042–1050 (2006)

    Article  Google Scholar 

  32. Heintz, C., et al.: Corroded nitinol wires in explanted aortic endografts: an important mechanism of failure? J. Endovasc. Ther. 8(3), 248–253 (2001)

    Article  Google Scholar 

  33. Hahin, C.: Effects of corrosion and fatigue on the load-carrying capacity of structural and reinforcing steel. Illinois. Dept. of Transportation. Bureau of Materials and Physical Research (1994)

  34. McKelvey, A., Ritchie, R.: Fatigue-crack growth in the superelastic endovascular stent material nitinol. In: MRS Online Proceedings Library (OPL), vol. 550 (1998)

  35. Santillo, M.: Fracture and crack propagation study of a Superficial Femoral Artery Nitinol stent. University of Pavia (2008)

  36. Qiu, T., Zhao, L.: Research into biodegradable polymeric stents: a review of experimental and modelling work. Vessel Plus 2, 12 (2018)

    Article  Google Scholar 

  37. Gong, Y., et al.: In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomater. 3(4), 531–540 (2007)

    Article  Google Scholar 

  38. Liu, G., Zhang, X., Wang, D.: Tailoring crystallization: towards high-performance poly(lactic acid). Adv. Mater. 26(40), 6905–6911 (2014)

    Article  Google Scholar 

  39. Rodrigues, N., et al.: Manufacture and characterisation of porous PLA scaffolds. Procedia CIRP 49, 33–38 (2016)

    Article  Google Scholar 

  40. Zamiri, P., et al.: The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries. Biomaterials 31(31), 7847–7855 (2010)

    Article  Google Scholar 

  41. Grabow, N., et al.: A biodegradable slotted tube stent based on poly(l-lactide) and poly (4-hydroxybutyrate) for rapid balloon-expansion. Ann. Biomed. Eng. 35(12), 2031–2038 (2007)

    Article  Google Scholar 

  42. Grabow, N., et al.: Mechanical properties of a biodegradable balloon-expandable stent from poly(l-lactide) for peripheral vascular applications. J. Med. Devices (2007). https://doi.org/10.1115/1.2355683

    Article  Google Scholar 

  43. Hoffmann, R., Mintz, G.: Coronary in-stent restenosis—predictors, treatment and prevention. Eur. Heart J. 21(21), 1739–1749 (2000)

    Article  Google Scholar 

  44. Günther, R., et al.: Venous stenoses in dialysis shunts: treatment with self-expanding metallic stents. Radiology 170(2), 401–405 (1989)

    Article  Google Scholar 

  45. McKenna, C.G., Vaughan, T.J.: An experimental evaluation of the mechanics of bare and polymer-covered self-expanding wire braided stents. J. Mech. Behav. Biomed. Mater. 103, 103549 (2020)

    Article  Google Scholar 

  46. Pan, C., et al.: Investigation of braided stents in curved vessels in terms of" Dogbone" deformation. Math. Biosci. Eng. 19(6), 5717–5737 (2022)

    Article  Google Scholar 

  47. McKenna, C.G., Vaughan, T.J.: A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents. J. Mech. Behav. Biomed. Mater. 115, 104305 (2021)

    Article  Google Scholar 

  48. Ueng, K.-C., et al.: Stainless steel/nitinol braid coronary stents: Braiding structure stability and cut section treatment evaluation. J. Ind. Text. 45(5), 965–977 (2016)

    Article  Google Scholar 

  49. Zheng, Q., et al.: Mechanical characterization of braided self-expanding stents: impact of design parameters. J. Mech. Med. Biol. 19(06), 1950038 (2019)

    Article  Google Scholar 

  50. Zhao, F., et al.: Braided bioresorbable cardiovascular stents mechanically reinforced by axial runners. J. Mech. Behav. Biomed. Mater. 89, 19–32 (2019)

    Article  Google Scholar 

  51. Sun, J., et al.: A novel braided biodegradable stent for use in congenital heart disease: short-term results in porcine iliac artery. J. Biomed. Mater. Res. Part A 107(8), 1667–1677 (2019)

    Google Scholar 

  52. Liu, M., et al.: Mixed-braided stent: an effective way to improve comprehensive mechanical properties of poly(l-lactic acid) self-expandable braided stent. J. Mech. Behav. Biomed. Mater. 128, 105123 (2022)

    Article  Google Scholar 

  53. Nuutinen, J.-P., Clerc, C., Törmälä, P.: Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J. Biomater. Sci. Polym. Ed. 14(7), 677–687 (2003)

    Article  Google Scholar 

  54. Akmangit, I., et al.: Dual stenting using low-profile LEO baby stents for the endovascular management of challenging intracranial aneurysms. Am. J. Neuroradiol. 36(2), 323–329 (2015)

    Article  Google Scholar 

  55. León, L.R., Jr., et al.: Preliminary results of the initial United States experience with the Supera woven nitinol stent in the popliteal artery. J. Vasc. Surg. 57(4), 1014–1022 (2013)

    Article  Google Scholar 

  56. Zhao, S., Liu, X.C., Gu, L.: The impact of wire stent fabrication technique on the performance of stent placement. J. Med. Devices (2012). https://doi.org/10.1115/1.4005788

    Article  Google Scholar 

  57. Lee, J.H., et al.: Comparison of the utility of covered metal stents versus uncovered metal stents in the management of malignant biliary strictures in 749 patients. Gastrointest. Endosc. 78(2), 312–324 (2013)

    Article  MathSciNet  Google Scholar 

  58. Zheng, Q., et al.: Mechanical characterizations of braided composite stents made of helical polyethylene terephthalate strips and NiTi wires. Nanotechnol. Rev. 8(1), 168–174 (2019)

    Article  Google Scholar 

  59. Kim, J.H., Kang, T.J., Yu, W.-R.: Mechanical modeling of self-expandable stent fabricated using braiding technology. J. Biomech. 41(15), 3202–3212 (2008)

    Article  Google Scholar 

  60. Gijsen, F.J., et al.: Simulation of stent deployment in a realistic human coronary artery. Biomed. Eng. Online 7(1), 1–11 (2008)

    Article  Google Scholar 

  61. Wiesent, L., et al.: Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning. PLoS ONE 14(10), e0224026 (2019)

    Article  Google Scholar 

  62. Mohammed, A.M., Ariane, M., Alexiadis, A.: Fluid–structure interaction in coronary stents: a discrete multiphysics approach. ChemEngineering 5(3), 60 (2021)

    Article  Google Scholar 

  63. McElhinney, D.B., Marshall, A.C., Schievano, S.: Fracture of cardiovascular stents in patients with congenital heart disease: theoretical and empirical considerations. Circ. Cardiovasc. Interv. 6(5), 575–585 (2013)

    Article  Google Scholar 

  64. Rassaf, T., Steiner, S., Kelm, M.: Postoperative care and follow-up after coronary stenting. Dtsch. Arztebl. Int. 110(5), 72 (2013)

    Google Scholar 

Download references

Funding

This project was not funded by any funding body.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar Alkahlan.

Ethics declarations

Conflict of interest

As of authors’ best of knowledge there is no competing interest of the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdi, A., Alotaibi, A.M., Tabbakh, T. et al. Coronary stent fracture and application of interactive design: a narrative review. Int J Interact Des Manuf 17, 1459–1473 (2023). https://doi.org/10.1007/s12008-023-01266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01266-z

Keywords

Navigation