Skip to main content

Advertisement

Log in

Large-part manufacturing using CNC-assisted material extrusion-based additive manufacturing: issues and challenges

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Additive Manufacturing (AM), commonly known as 3D printing, is transforming the manufacturing industry with rapid product development. With the new technological transformation comes new issues and challenges in the manufacturing industry. Additive manufacturing technique with large build volume is costlier compared to smaller ones. Therefore, CNC-assisted material extrusion-based additive manufacturing system has been developed by the FFF laboratory in PDPM IIITDM Jabalpur using an existing Computer Numerical Control (CNC) machine. Using the developed system, large-sized parts can be easily fabricated on the CNC machine platform. The developed system requires setting up new process parameters values to fabricate large-sized parts compared to fused filament fabrication process system. However, the developed system also generates new possibilities such as composite material product development for various industries. Most of the constraints of fused filament fabrication process parameters still apply to this system. Beyond those constraints, new issues and challenges exist because the CNC-assisted material extrusion-based additive manufacturing system significantly changes the properties associated with the fused filament fabrication process. The research article presents the working of the developed system and issues associated with the fabricated parts. The capabilities and challenges in the fabrication of large-sized parts using the developed AM system are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumar, N., Jain, P.K., Tandon, P., Pandey, P.M.: Additive manufacturing of flexible electrically conductive polymer composites via CNC-assisted fused layer modeling process. J. Brazilian Soc. Mech. Sci. Eng. 40, 1–13 (2018). doi:https://doi.org/10.1007/s40430-018-1116-6

    Article  Google Scholar 

  2. Pignatelli, F., Percoco, G.: An application- and market-oriented review on large format additive manufacturing, focusing on polymer pellet-based 3D printing. Prog Addit. Manuf. (2022). doi:https://doi.org/10.1007/s40964-022-00309-3

  3. Tagscherer, N., Bär, A.M., Zaremba, S., Drechsler, K.: Mechanical Analysis of Parameter Variations in Large-Scale Extrusion Additive Manufacturing of Thermoplastic Composites. J. Manuf. Mater. Process. 6 (2022). doi:https://doi.org/10.3390/jmmp6020036

  4. Francis, V., Jain, P.K.: A filament modification approach for in situ ABS / OMMT nanocomposite development in extrusion-based 3D printing. J. Brazilian Soc. Mech. Sci. Eng. 6 (2018). doi:https://doi.org/10.1007/s40430-018-1282-6

  5. Taufik, M., Jain, P.K.: Part surface quality improvement studies in fused deposition modelling process: a review. Aust J. Mech. Eng. 20, 527–551 (2022). doi:https://doi.org/10.1080/14484846.2020.1723342

    Article  Google Scholar 

  6. Gawali, S.K., Pandey, G.C., Jain, P.K.: Experimental investigations on effect of graphite loading on melt flow behaviour of ABS-Gr composite for fused filament fabrication (FFF) process. Adv. Mater. Process. Technol. 0, 1–11 (2022). doi:https://doi.org/10.1080/2374068X.2022.2093004

    Article  Google Scholar 

  7. Hassen, A.A., Dinwiddie, R.B., Kim, S., Tekinap, H.L., Kumar, V., Lindahl, J., Yeole, P., Duty, C., Vaidya, U., Wang, H., Kunc, V.: Anisotropic thermal behavior of extrusion-based large scale additively manufactured carbon-fiber reinforced thermoplastic structures. Polym. Compos. 43, 3678–3690 (2022). doi:https://doi.org/10.1002/pc.26645

    Article  Google Scholar 

  8. Bi, M., Xia, L., Tran, P., Li, Z., Wan, Q., Wang, L., Shen, W., Ma, G., Xie, Y.M.: Continuous contour-zigzag hybrid toolpath for large format additive manufacturing. Addit. Manuf. 55, 102822 (2022). doi:https://doi.org/10.1016/j.addma.2022.102822

    Article  Google Scholar 

  9. Cleeman, J., Bogut, A., Mangrolia, B., Ripberger, A., Kate, K., Zou, Q., Malhotra, R.: Scalable, flexible and resilient parallelization of fused filament fabrication: Breaking endemic tradeoffs in material extrusion additive manufacturing. Addit. Manuf. 56, 102926 (2022). doi:https://doi.org/10.1016/j.addma.2022.102926

    Article  Google Scholar 

  10. Farahbakhsh, M., Rybkowski, Z.K., Zakira, U., Kalantar, N., Onifade, I.: Impact of robotic 3D printing process parameters on interlayer bond strength. Autom. Constr. 142, 104478 (2022). doi:https://doi.org/10.1016/j.autcon.2022.104478

    Article  Google Scholar 

  11. Roschli, A., Gaul, K.T., Boulger, A.M., Post, B.K., Chesser, P.C., Love, L.J., Blue, F., Borish, M.: Designing for Big Area Additive Manufacturing. Addit. Manuf. 25, 275–285 (2019). doi:https://doi.org/10.1016/j.addma.2018.11.006

    Article  Google Scholar 

  12. Landi, D., Zefinetti, F.C., Spreafico, C., Regazzoni, D.: Comparative life cycle assessment of two different manufacturing technologies: Laser additive manufacturing and traditional technique. Procedia CIRP. 105, 700–705 (2022). doi:https://doi.org/10.1016/j.procir.2022.02.117

    Article  Google Scholar 

  13. Gawali, S.K., Kumar, N., Jain, P.K.: Additive Manufacturing of Large Size Parts Through Retrofitment of Three-Axes CNC Machining Centre. In: Pratap Singh, R., Tyagi, D.M., Panchal, D., and Davim, J.P. (eds.) Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020). Springer International Publishing, Cham (2022)  pp. 421–437

  14. Gawali, S.K., Kumar, N., Jain, P.K.: Investigations on the Development of Heated Build Platform for Additive Manufacturing of Large-Size Parts. In: Sharma, V.S., Dixit, U.S., Sørby, K., Bhardwaj, A., Trehan, R. (eds.) Manufacturing Engineering, pp. 1–17. Springer Singapore, Singapore (2020)

    Google Scholar 

  15. Taufik, M., Jain, P.K.: CNC-assisted selective melting for improved surface finish of FDM parts. Virtual Phys. Prototyp. 11, 319–341 (2016). doi:https://doi.org/10.1080/17452759.2016.1245943

    Article  Google Scholar 

  16. Taufik, M., Jain, P.K.: Thermally assisted finishing of fused deposition modelling build part using a novel CNC tool. J. Manuf. Process. 59, 266–278 (2020). doi:https://doi.org/10.1016/j.jmapro.2020.09.060

    Article  Google Scholar 

  17. Heller, B.P., Smith, D.E., Jack, D.A.: Planar deposition flow modeling of fiber filled composites in large area additive manufacturing. Addit. Manuf. 25, 227–238 (2019). doi:https://doi.org/10.1016/j.addma.2018.10.031

    Article  Google Scholar 

  18. Pappas, J.M., Thakur, A.R., Leu, M.C., Dong, X.: A comparative study of pellet-based extrusion deposition of short, long, and continuous carbon fiber-reinforced polymer composites for large-scale additive manufacturing. J. Manuf. Sci. Eng. Trans. ASME. 143, 1–12 (2021). doi:https://doi.org/10.1115/1.4049646

    Article  Google Scholar 

  19. Akbari, S., Johansson, J., Johansson, E., Tönnäng, L., Hosseini, S.: Large-Scale Robot-Based Polymer and Composite Additive Manufacturing: Failure Modes and Thermal Simulation. (2022)

  20. Wang, Z., Liu, R., Sparks, T., Liou, F.: Large-scale deposition system by an Industrial Robot (I): Design of fused pellet modeling system and extrusion process analysis. 3D Print. Addit. Manuf. 3, 39–47 (2016). doi:https://doi.org/10.1089/3dp.2015.0029

    Article  Google Scholar 

  21. Liu, X., Chi, B., Jiao, Z., Tan, J., Liu, F., Yang, W.: A large-scale double-stage-screw 3D printer for fused deposition of plastic pellets. J. Appl. Polym. Sci. 134, 1–9 (2017). doi:https://doi.org/10.1002/app.45147

    Article  Google Scholar 

  22. Duty, C.E., Kunc, V., Compton, B., Post, B., Erdman, D., Smith, R., Lind, R., Lloyd, P., Love, L.: Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials. Rapid Prototyp. J. 23, 181–189 (2017). doi:https://doi.org/10.1108/RPJ-12-2015-0183

    Article  Google Scholar 

  23. Moreno Nieto, D., Casal López, V., Molina, S.I.: Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit. Manuf. 23, 79–85 (2018). doi:https://doi.org/10.1016/j.addma.2018.07.012

    Article  Google Scholar 

  24. Du, J., Wei, Z., Wang, X., Wang, J., Chen, Z.: An improved fused deposition modeling process for forming large-size thin-walled parts. J. Mater. Process. Technol. 234, 332–341 (2016). doi:https://doi.org/10.1016/j.jmatprotec.2016.04.005

    Article  Google Scholar 

  25. Kumar, N., Jain, P.K., Tandon, P., Pandey, P.M.: Investigation on the effects of process parameters in CNC assisted pellet based fused layer modeling process. J. Manuf. Process. 35, 428–436 (2018). doi:https://doi.org/10.1016/j.jmapro.2018.08.029

    Article  Google Scholar 

  26. Kumar, N., Jain, P.K., Tandon, P., Pandey, P.M.: Extrusion-based additive manufacturing process for producing flexible parts. J. Brazilian Soc. Mech. Sci. Eng. 40, 1–12 (2018). doi:https://doi.org/10.1007/s40430-018-1068-x

    Article  Google Scholar 

  27. Kumar, N., Jain, P.K., Tandon, P., Pandey, P.M.: Toolpath Generation for Additive Manufacturing Using CNC Milling Machine. In: Kumar, L.J., Pandey, P.M., Wimpenny, D.I. (eds.) 3D Printing and Additive Manufacturing Technologies, pp. 73–82. Springer Singapore, Singapore (2019)

    Google Scholar 

  28. Crisp, T.G., Weaver, J.M.: Review of Current Problems and Developments in Large Area Additive Manufacturing (LAAM) Tyler G. Crisp and Jason M. Weaver Department of Manufacturing Engineering, Brigham Young University, Provo, UT 84602. Solid Free. Fabr. 2021 Proc. 32nd Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 1539–1548 (2021)

  29. Moreno, D., De, M., Javier, F., Casal, V., Ignacio, S.: Development of carbon fi ber acrylonitrile styrene acrylate composite for large format additive manufacturing. Mater. Des. 191, 108577 (2020). doi:https://doi.org/10.1016/j.matdes.2020.108577

    Article  Google Scholar 

  30. Messman, J., Advincula, R.C.: Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym. Sci. (2019). https://doi.org/10.1016/j.progpolymsci.2019.101162

    Article  Google Scholar 

  31. Nycz, A., Noakes, M., Post, B.K., Roschli, A., Babu, S., Love, L.J.: Development and demonstration of large scale metal additive manufacturing for military vehicle applications - Final Report. (2017)

  32. Love, L.J., Noakes, M.W., Post, B.K., Rhyne, B.J., Gaul, K.T.: Feasibility of using additive manufacturing to produce automotive tooling. (2018)

  33. Post, B.K., Richardson, B., Lind, R., Love, L.J., Lloyd, P., Kunc, V., Rhyne, B.J., Roschli, A., Hannan, J., Nolet, S., Veloso, K., Kurup, P., Re, T., Jenne, D.: Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017. Solid Free. Fabr. 2017 Proc. 28th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF, pp. 2430–2446 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Kailas Gawali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawali, S.K., Pandey, G.C., Bajpai, A. et al. Large-part manufacturing using CNC-assisted material extrusion-based additive manufacturing: issues and challenges. Int J Interact Des Manuf 17, 1185–1197 (2023). https://doi.org/10.1007/s12008-022-01097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01097-4

Keywords

Navigation